
Scripting for System Administrators

Lectures 2 - 8: Python Basic Syntax

Goals of the Lecture

06/10/2016 Dr. Ignacio Castiñeiras 2

1. Introduction to Python Basic Syntax

 Start from scratch: Assume we know nothing.

What’s the minimum we must know to start working with Python?

How to learn this minimal syntax?  Incremental Methodology

o Describe one new concept at a time.

o Show it in action via one or more solved examples.

o Propose exercises for it.

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 3

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 4

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 5

Computing-driven Society loop:

i. Need to solve problems.

ii. Problems that require complex strategies (algorithms) to be

addressed.

iii. Algorithms that are implemented in programming languages

via programs.

iv. Programs that are executed (run) by computers.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 6

 By installing the Python interpreter and Python Virtual Machine…

o Computer able to understand the Python language and to perform

some computations based on its Python knowledge.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 7

Key Concept:

What Python knowledge does a computer have?

Three knowledge levels:

1. Default knowledge  Prelude.

2. Linked knowledge  Imported.

3. New knowledge  Generated.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 8

 Default Knowledge  Prelude

o Let’s suppose a computer speaks Python. Thus, the computer has

some implicit knowledge of Python’s grammar and expressions:

 Keywords: It knows what is a for loop, if statement…

 Datatypes: It knows that 5 is an integer, that True is a Boolean…

 Operators: It knows that 5 < 6 = True, that True /\ False = False…

 It understands functions and modularity: It has a value/reference

parameter passing policy, strictness/laziness of parameter evaluation…

o This is usually referred to as the programming language prelude.

By speaking Python, the computer understands all these things (it

is part of its knowledge) and thus can do computations using them.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 9

 Linked Knowledge  Imported

o A computer can borrow some knowledge generated by others:

 E.g., the Python prelude does not include logarithmic operations.

Thus, it is not part of the default knowledge a computer has, so it

cannot do computations including logarithms.

 However, this can be fixed by borrowing the external library:

import math;

 This extends the Python knowledge the computer has with

logarithms and other maths operations, which can be from now

on part of the operations the computer can do.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 10

 New Knowledge  Generated

o We can extend by ourselves (via Python programs) the Python

knowledge a computer can use.

 Imagine we want to compute the number of words written in a

text file.

 This functionality does not belong to the Python prelude, so the

computer does not know how to do it just by the sake of

speaking Python.

 Moreover, let’s suppose that nobody in the Python community

did this before (of course this is not the case, but let’s suppose it

is). Thus, the computer cannot borrow this knowledge by

importing it neither.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 11

 New Knowledge  Generated

o Even in this case, we can still make a computer to open a text file

and count the words written on it. All we need is to:

1. Create a new Python program (e.g., my_program.py).

2. Implement by ourselves within the program a new function

(e.g., my_count_words) achieving the functionality required:

def my_count_words(file):

#function content (based on knowledge the computer has)

3. Import the program my_program.py, so that the computer

learns all the new functions defined on it.

4. Now the computer can use my_count_words as part of its

Python knowledge.

Background: Python Programs Execution

06/10/2016 Dr. Ignacio Castiñeiras 12

Once the three categories of knowledge have been introduced,

let’s elaborate a bit more on each of them in the following sections:

 Default knowledge (Prelude):

Keywords, Datatypes, Operators

 Linked knowledge (Imported):

Imports

 New knowledge (Generated):

Variables, Functions

and, for the sake of being used for new generated knowledge:

Control Flow, Exception Handling, User Inputs

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 13

Keywords

 A keyword, or reserved word, is a word that is reserved by a

program because it has a special meaning.

 This keyword and its meaning is known by the computer, as is part

of the Prelude or default knowledge.

The Python language has a small subset of keywords:

06/10/2016 Dr. Ignacio Castiñeiras 14

Keywords

 Some keywords are related to control flow statements

(we will see more on them in the Control Flow Statement section)

06/10/2016 Dr. Ignacio Castiñeiras 15

Keywords

 Some keywords are related to operators

(we will see more on them in the Operators section)

06/10/2016 Dr. Ignacio Castiñeiras 16

Keywords

 Some keywords are related to exceptions

(we will see more on them in the Exception Handling section)

06/10/2016 Dr. Ignacio Castiñeiras 17

Keywords

 Remaining keywords are related to: Function declaration, object

oriented class declaration, type aliases, import modules, etc.

We will see more on some of them during the next sections.

06/10/2016 Dr. Ignacio Castiñeiras 18

Keywords

Let’s see one of these keywords in action: print

 print(*objects, sep=' ', end='\n', file=sys.stdout)

is a built-in function for displaying object messages.

o The function allows to write a single message or to append

several ones.

o The separation among the messages, the message finish protocol

and the proper stream the messages are printed to are

customisable (with default values being set in case of omit them)

 The file ex01_print.py presents some uses of print.

06/10/2016 Dr. Ignacio Castiñeiras 19

Example: ex01_print.py

Keywords

 Comments on ex01_print.py:

1. The separation between:

A. Python Program Definition:

Where we define the imports, global variables and functions

determining the linked and generated new knowledge the

computer can use when running the Python Execution

section.

 In this case, the Python program consists on a single function

print_examples. We will spend an entire section for dealing

with functions later on, so by the moment we will not worry

about it.

06/10/2016 Dr. Ignacio Castiñeiras 20

Example: ex01_print.py

Keywords

 Comments on ex01_print.py:

1. The separation between:

B. Python Program Execution:

 The concrete computations we ask the computer to do in our

behalf, based on the default, linked and generated knowledge

the computer has of Python.

 In this case, the Python execution just requires to run the

function print_examples. The computer knows how to run this

function, as it is part of its new generated knowledge learnt

after loading the Python program section.

By running the program we can see the results the computer

produces.

06/10/2016 Dr. Ignacio Castiñeiras 21

Example: ex01_print.py

Keywords

 Comments on ex01_print.py:

2. The indentation:

o As we can see, Python does not use brackets { } to indicate

blocks of code (as you might be used to after studying Java).

o Instead, blocks of code in Python are rigid enforced by

indenting the code:

 The content of the function print_examples (defined in line

17) is determined by the sub-sequent lines of code being

indented (lines 18-40).

 Likewise, the content of the Python execution section

(starting at line 49) is determined by the sub-sequent lines

of code being indented (just line 50).

06/10/2016 Dr. Ignacio Castiñeiras 22

Example: ex01_print.py

Keywords

 Comments on ex01_print.py:

3. The comment lines:

o Any line starting with a hash sign # represents a user comment

(e.g., lines 18, 21, 24, 25, etc.).

o The computer will ignore these lines, but they are very useful

as they make the program more human readable

(imagine we want to maintain/reuse the code in the future).

06/10/2016 Dr. Ignacio Castiñeiras 23

Example: ex01_print.py

Keywords

 Regarding the proper code, the file shows how to use print to:

o Print to the standard output.

o How to print multiple messages concatenated.

o How to print to a file.

 Likewise, it shows how to use input to read something the user

entered by keyboard.

o We will see much more on how to read / write from files in the

second part of the semester.

06/10/2016 Dr. Ignacio Castiñeiras 24

Example: ex01_print.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 25

Datatypes

 A datatype is a classification identifying one of various types of

data. It determines:

o The possible values this type can take.

o The operations that can be done with values of this type.

o The meaning of the data and the way values of that type can be

stored.

 Example:

o The set of values of the Boolean datatype are True and False.

o The type supports most logical operations: and, or, not, etc.

o The data represents a logical statement and it can be stored in a

computer memory with the values 0 and 1 (using a single byte).

06/10/2016 Dr. Ignacio Castiñeiras 26

Datatypes

 Python supports the following datatypes as part of its prelude:

o Basic types.

 Integer  int

 Rational  float

 Logical  bool

o Compound types.

 Lists  list

 String  str

 Tuple  tuple

 Hash table / dictionary  dict

06/10/2016 Dr. Ignacio Castiñeiras 27

Datatypes

 Python has dynamic typing:

o This means that runtime objects (values) have a type.

o This is opposed to static typing languages (as Java) where

variables have a type. In Python, variables do not have a type,

they can name any object.

 Example:

x = 1  Here the variable x names a value of type int

x = True  Straight away x is made to name a value of

type bool, without any explicit type conversion.

This is forbidden in Java (as it is a static typing language)

but supported in Python (as it is a dynamic typing language).

06/10/2016 Dr. Ignacio Castiñeiras 28

Datatypes

 Python has strong typing:

o This means that the type of a value does not suddenly change.

o A String value containing some numbers “123” doesn’t

magically become the int number 123.

 Example:

int(“123”) 123  Every change of type requires

an explicit conversion

x = “123”

x = int(x)

06/10/2016 Dr. Ignacio Castiñeiras 29

Keywords

Let’s see these datatypes and type castings in action

 The function python_datatypes of the file ex02_datatypes.py presents

the different basic and compound types available in Python, with one

variable assigned to a value of each of these datatypes.

 The function type_conversions of the file ex02_datatypes.py presents

some of the type conversion (castings) we can perform in Python.

06/10/2016 Dr. Ignacio Castiñeiras 30

Example: ex02_datatypes.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 31

Operators

 An operator is a keyword with a fixed syntax.

o Its behaviour is similar to a function, in the sense that it takes as

input some argument (values of concrete datatypes) and

perform some computation with them so as to produce a result.

06/10/2016 Dr. Ignacio Castiñeiras 32

Operators

 Most of the operators we will see now are binary (they have two

arguments), although they can be of any arity n.

o Operator :: Argument1 Argument2  Result

Examples:

(+) :: int int int (+) 3 5  8

(and) :: bool bool bool (and) True False  False

 Moreover, most binary operators are used with an infix notation,

in which the operator is placed in between its two arguments:

3 + 5  8

True and False  False

06/10/2016 Dr. Ignacio Castiñeiras 33

Operators

 The Python prelude supports the following basic operators:

o Arithmetic: +, -, *, /, %, **

o Relational: ==, !=, >, >=, <, <=

o Logical: and, or, not

o Assignment: =, +=, -=

06/10/2016 Dr. Ignacio Castiñeiras 34

Keywords

Let’s see these operators in action

 The function operators_examples of the file ex03_operators.py calls to

the functions arithmetic_examples, relational_examples and

logical_examples for examples in the arithmetic, relational and logical

operators presented before, resp.

 Likewise, the result of each operator is stored in a variable via an

assignment operator.

o E.g., add = 6 + 3  The assignment operator =

stores the result of the + operator (with input arguments 6 and 3)

into the variable add.

06/10/2016 Dr. Ignacio Castiñeiras 35

Example: ex03_operators.py

Keywords

 In the function logical_examples we can see the application of a
logical operator and over the results produced by applying two
relational operators.

and_example = 6 > 0 and 0 > 2

1. The relational operator > is applied over the arguments 6 and 0.
It returns the Boolean value True as a result.

2. The relational operator > is applied over the arguments 0 and 2.
It returns the Boolean value False as a result.

3. The operator and is applied over the arguments True and False.
It returns the Boolean value False as a result.

4. The operator = is applied over the variable and_example and the
value False. It assigns the value False to the variable and_example.

06/10/2016 Dr. Ignacio Castiñeiras 36

Example: ex03_operators.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 37

Imports

Besides the default knowledge of the Python prelude…

 A computer can borrow the knowledge contained in a concrete

program ‘my_program.py’ (possibly generated by others).

 To import this knowledge it suffices with using the command:

o import my_program

which imports all the knowledge generated in the Python program

section of my_program.py:

 Any function my_function declared on it.

 Any other Python module imported on it.

 Any global variable defined on it.

06/10/2016 Dr. Ignacio Castiñeiras 38

Imports

Example1

 The Python prelude does not include a logarithm operator.

 However, the Python program math.py (included in the Python
distribution) does include the function log, which computes the
logarithm of a number in a concrete base.

def log(number, base):

content of the function

 Thus, if we import the Python program math.py then we can make
use of the function log.

import math

result = math.log(500, 10)  Computes the log of 500 in base 100

06/10/2016 Dr. Ignacio Castiñeiras 39

Imports

Example2

 A Python program can receive some values from the command line.

These values are treated as arguments to the program, and are to be

picked by the user each time the program is to be executed.

 The Python prelude does not include an operator to access to a

command line argument passed by the user.

However, the Python program sys.py (included in the Python

distribution), does include the operator argv[i], which accesses to the

i-est argument passed by the user.

06/10/2016 Dr. Ignacio Castiñeiras 40

Keywords

Let’s see these two imports in action

 The function log_of_arguments uses sys.argv[1] and sys.argv[2] to get

the 2 command line arguments passed as parameters by the user.

 Each of these arguments is read as a String (e.g., num and base).

Thus, to be used as input arguments of the function log, they need to

be converted first to integer values (i_num and i_base).

When calling a program from command line, the argument sys.argv[0]

is always the name of the program (in this case: exp4_imports.py).

06/10/2016 Dr. Ignacio Castiñeiras 41

Example: ex04_imports.py

Keywords

06/10/2016 Dr. Ignacio Castiñeiras 42

Example: ex04_imports.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 43

Variables

 Any Python program can include new knowledge generated by the

user, so that the computer can use it for doing computations.

 The main two sources of generating new knowledge are via

Variables and Functions

And, for creating more expressive functions,

we are going to see other constructs as

Control Flow, Exception Handling, User Inputs

06/10/2016 Dr. Ignacio Castiñeiras 44

Variables

 A variable is a named link/reference to a value stored in the

program’s memory or to an expression that can be evaluated.

o The expression/value it is pointing at can be modified during

the program execution:

 The evaluation of the expression might change.

 The variable can be reassigned to a different expression.

06/10/2016 Dr. Ignacio Castiñeiras 45

Variables

 A variable has to be declared somewhere within the program.

o This declaration place determines the variable scope

(the region in which the variable is valid).

o Some scope examples:

 A global variable, defined at the beginning of the Python

program section  The variable is valid for the entire file.

 A variable defined within a function  The variable is only

valid within the entire function block.

 Interestingly, a variable defined within a control-flow block

(e.g., if, for, while)  The variable is valid within the

control-flow block and also once it is finished

(this is different from Java).

06/10/2016 Dr. Ignacio Castiñeiras 46

Keywords

 The function variable_examples of ex05_variable_expression.py

presents some examples of variables and the expressions

they can be assigned to in action.

We can see that a variable can be assigned either to:

1. A concrete value: x = 2 ; y = 5

2. An expression that is evaluated to a concrete value before

assigning this value to the variable: x = x + 1  x = 3

o In this case the expression x + 1 is evaluated.

o As x is currently assigned to the integer value 2, the expression

can be evaluated as 2 + 1, giving the value 3 as output.

o Finally, x is assigned to this value 3.

 Likewise, y = y + x  y = 8 (as y = 5 and x = 3)

06/10/2016 Dr. Ignacio Castiñeiras 47

Example: ex05_variable_expression.py

Keywords

 Each new variable we define is new knowledge we are generating.

o To define a variable we have to assign it to an initial value.

o The Python interpreter does not allow a variable with no value

assigned to it, as it is interpreted as an unresolved reference.

Here we can see an example with the expression x + z, where the

variable z has not been previously assigned any value, and thus it is

interpreted as an unknown identifier.

06/10/2016 Dr. Ignacio Castiñeiras 48

Example: ex05_variable_expression.py

Keywords

 As we stated in the Section “Datatypes”, Python has dynamic and

strong typing.

o We can see that the variable y is assigned to an integer value 8.

 And, if we ask for type(y) it returns type int, obviously.

o Later on, we can assign y to an expression of a different datatype.

In this case we assign it to the expression 3 > 0, which is resolved

to the value True, of type Boolean (bool).

o Finally, we can explicitly cast the Boolean value True to a String

value “True”, of type String.

06/10/2016 Dr. Ignacio Castiñeiras 49

Example: ex05_variable_expression.py

Keywords

 A global variable a is defined.

o The scope of this variable is the entire program section.

Thus, it can be used within the function example_1.

o However, a function can define a local variable a.

In this case, the local variable a is said to overwrite the global one

(i.e., it is the local variable a the one being used within the

function, and not the global one).

o These examples with global variables are used to explain the

concept of variable scope. However, the message is clear:

 Do not use global variables during this semester!

06/10/2016 Dr. Ignacio Castiñeiras 50

Example: ex06_variable_scope.py

Keywords

 As previously stated, interestingly, in Python a control-flow block

does not define a scope.

o That is, the function example_3 includes an if block.

o Within this if block the variable x is defined by assigning the value

3 to it.

o However, once the if block finishes, the scope of x still remains, so

it can be used for the rest of the function (in particular in the

expression x = x + 1 just after the if block).

06/10/2016 Dr. Ignacio Castiñeiras 51

Example: ex06_variable_scope.py

Keywords

 This behaviour is not supported in other programming languages as

Java, which has a strict block scope for the control-flow statements.

 As we can see, it leads to an error

in compilation time.

06/10/2016 Dr. Ignacio Castiñeiras 52

Example: ex06_variable_scope.py

Keywords

 In Python the interpreter triggers a warning, but not an error.

 In execution time:

o If the code enters the if block, x is

defined and the program execution

succeeds.

o If the code does not enter the if block

(imagine i = False), then x not defined

and when it is used in the expression

x = x + 1 the program triggers an

execution error.

06/10/2016 Dr. Ignacio Castiñeiras 53

Example: ex06_variable_scope.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 54

Control Flow

 The statements inside a Python program are generally executed

from top to bottom, in the order that they appear.

 A control flow statement breaks up the flow of execution by

employing decision making, looping, and branching, enabling a

program to conditionally execute particular blocks of code.

06/10/2016 Dr. Ignacio Castiñeiras 55

Control Flow

We are going to define the main control flow statements we will

use during the semester. We can classify them into:

o Decision-making statements:

 If-then If-then-else

o Looping statements:

 While For

o Branching statements:

 Break Continue

06/10/2016 Dr. Ignacio Castiñeiras 56

Control Flow

Decision-making statements

 If-then:

An if-then statement forces to execute a certain block of code only

if a particular Boolean expression evaluates to True.

 If-then-else:

An if-then-else statement provides a secondary path of execution if

the Boolean expression evaluates to False.

Note: Python supports any nested level of if-then and if-then-else

statements.

06/10/2016 Dr. Ignacio Castiñeiras 57

Keywords

Let’s see in action some examples of

if-then, if-then-else statements and nested applications of them

 The function if_then_examples presents examples for if-then with:

o A fixed True/False evaluated condition/expression.

o A variable condition/expression, whose evaluation depends on the

value of a variable.

o A complex condition/expression, based on the previous evaluation

of sub-expressions so as to finally evaluate the expression.

06/10/2016 Dr. Ignacio Castiñeiras 58

Example:
ex07_control_flow_decision_making.py

Keywords

Let’s see in action some examples of

if-then, if-then-else statements and nested applications of them

 Likewise, the function if_then_else_examples presents a variant with

an else path for each example of if_then_examples.

 Finally, the function nested_if_examples presents the nested

application of 3 if_then_else staments.

o Please note that nested application of if_then statements is also

supported, so as nested application of combined if_then with

if_then_else.

06/10/2016 Dr. Ignacio Castiñeiras 59

Example:
ex07_control_flow_decision_making.py

Control Flow

Looping statements

While:

Similar to an if_then statement, a while loop forces to execute
a certain block of code block if a particular Boolean expression expr
evaluates to true.

if expr == True: while expr == True:
block block

Main difference between while and if_then:

o While statement: Once block has been executed, the control
comes back to expr for re-evaluating it. Thus, block is executed
over and over again until expr evaluates to False.

06/10/2016 Dr. Ignacio Castiñeiras 60

Control Flow

Looping statements

 For:

A for loop iterates a variable over the items of any sequence,

forcing to execute a block of code once per item in the sequence.

for var in sequence:  for var in [item1, item2, …, itemn]:

block block

o On the i-est execution of block, var is assigned to value itemi.

o The sequence of items can be either a list or a string

(we will see lists and strings in further lectures. Now we just need

to think of them as constructs gathering n ≥ 0 elements in a

particular order).

06/10/2016 Dr. Ignacio Castiñeiras 61

Keywords

Let’s see in action some examples of

for and while loops (including nested applications of them)

 The function for_examples presents for examples iterating in:

o A list of integers [2,4,8].

o A String “Hello”.

o A range(1,5)  [1,2,3,4].

o A range(2,10,2) being the latter the increment  [2,4,6,8]

06/10/2016 Dr. Ignacio Castiñeiras 62

Example: ex08_control_flow_looping.py

Keywords

Let’s see in action some examples of

for and while loops (including nested applications of them)

 The function while_examples presents a variant of the function

if_else_examples but using while loops instead:

o Please note that Example 1 leads to an infinite loop.

o On the other hand, Example 2 presents a loop that is never

executed.

o The loop of Example 3 is executed three times.

o Likewise, the loop of Example 4 is executed twice.

06/10/2016 Dr. Ignacio Castiñeiras 63

Example: ex08_control_flow_looping.py

Keywords

Let’s see in action some examples of

for and while loops (including nested applications of them)

 The function nested_loop_examples presents:

o An example with 3 nested for loops.

o An example with 2 nested while loops.

o Please note that nested application of combined for with while

loops is also supported.

06/10/2016 Dr. Ignacio Castiñeiras 64

Example: ex08_control_flow_looping.py

Control Flow

Branching statements

 Break:

A break statement is associated to a looping statement, breaking

out of the smallest enclosing for or while loop.

 Continue:

A continue statement continues with the next iteration of the

smallest enclosing for or while loop.

06/10/2016 Dr. Ignacio Castiñeiras 65

Keywords

Let’s see in action some examples of

break and continue statements

 The function break_examples presents some examples of using a

break in:

o One for loop.

o Several for loops nested.

o One while loop.

o Several while loops nested.

 The function continue_examples presents the same examples and the

impact of using a continue instead of a break on them.

06/10/2016 Dr. Ignacio Castiñeiras 66

Example: ex09_control_flow_branching.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow Statements.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 67

Functions

 In programming, modularity refers to the separation of the

functionality of a program into independent, interchangeable

pieces, each of them fully responsible of a concrete task.

Modularity brings several advantages:

o As the size and complexity of a program grows, programming

tasks become more difficult.

o In this context, the decomposition of a problem into multiple

small and independent pieces allows to better model the problem

domain.

06/10/2016 Dr. Ignacio Castiñeiras 68

Functions

Modularity brings several advantages:

o It also improves readability and maintenance of programs

(code is easier to understand).

o If you have to change a functionality requirement and this

functionality is isolated in a piece of code, then it is easy to

locate it and modify it. Otherwise…nightmare!

06/10/2016 Dr. Ignacio Castiñeiras 69

Module 1

Function-11

Function-12

Function-1k

Module 2

Funtion-21

Function-22

Function-2j

Module n

Funtion-n1

Function-n2

Function-nt

…

Functions

 This semester, all our Python programs A single file/module.

However…

We will split the functionality of this single file/module

into as many functions as needed.

 A function is a block of organized, reusable code that is used to

perform a single, related action.

o The structure of all our functions is going to be:

def function_name(argument1, argument2, …, argumentn):

#Block of code

return (value1, value2, …, valuek)

06/10/2016 Dr. Ignacio Castiñeiras 70

Functions

Functions will play a central role in this semester.

Any Python program program.py used in the semester

will achieve its functionality via a set of functions.

 That is, all the example programs of the lectures, all the code

examples of the labs, all the exercises to be done as part of the

assignments and exam…

o All of them must consist on a set of functions.

o I will not accept any program providing part of its functionality

out of a function. Full stop.

06/10/2016 Dr. Ignacio Castiñeiras 71

Functions

06/10/2016 Dr. Ignacio Castiñeiras 72

Functions

06/10/2016 Dr. Ignacio Castiñeiras 73

This code does not

belong to any function

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 74

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 75

Function Call Stack

 As we have seen, a common aspect of all our examples so far is:

o The Python program section (at the top of the file):

 A set of functions (let’s say {f1, f2, …, fn}), in which we

define some functionality.

o The Python execution section (at the bottom of the file):

 n ≥ 1 lines of code, including a call to, at least, one of the

functions of the set (let’s suppose a single call to f2).

 Interestingly, we have seen that f2 can likewise include a call

to f3, which can likewise include a call to f4, etc.

06/10/2016 Dr. Ignacio Castiñeiras 76

Function Call Stack

The set of calls performed to execute a program is called the call stack.

 By tracing the program execution, we can study how this call stack:

o Grows (as new functions are called).

o Shrinks (as the functions finish their execution).

06/10/2016 Dr. Ignacio Castiñeiras 77

Keywords

Let’s use the debug mode to trace the execution of the Python program

ex10_functions_call_stack.py, observing the evolution of its call stack.

06/10/2016 Dr. Ignacio Castiñeiras 78

Example: ex10_functions_call_stack.py

Keywords

First, let’s set a breakpoint at the Python Execution Section.

06/10/2016 Dr. Ignacio Castiñeiras 79

Example: ex10_functions_call_stack.py

Keywords

Second, let’s trigger the debugging of the program.

06/10/2016 Dr. Ignacio Castiñeiras 80

Example: ex10_functions_call_stack.py

Keywords

Use ‘Step into’ to trace the execution instruction by instruction..

06/10/2016 Dr. Ignacio Castiñeiras 81

Example: ex10_functions_call_stack.py

Keywords

At any moment of the execution you can see the call stack.

06/10/2016 Dr. Ignacio Castiñeiras 82

Example: ex10_functions_call_stack.py

Keywords

For the function begin executed, you can see the state of its variables.

06/10/2016 Dr. Ignacio Castiñeiras 83

Example: ex10_functions_call_stack.py

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 84

Function Parameters

 A function can have n ≥ 0 formal parameters/arguments.

def function_name(argument1, argument2, …, argumentn):

#Block of code

return (value1, value2, …, valuek)

 These parameters are nothing but variables.

o And remember, all Python variables have to have a value assigned.

Which value is each parameter argumenti assigned to?

o This is resolved at the time the function is called.

o On each call to the function, the control is transfer to it, and the
variable argumenti is assigned to the value the function is called with.

06/10/2016 Dr. Ignacio Castiñeiras 85

Keywords

Let’s see in action some examples of functions with different parameters

 On the one hand, the function no_param has no parameters.

o It is static, in the sense that it always prints “Hello”.

 On the other hand, the function one_param(message) has a single

parameter, called ‘message’.

o It is dynamic, in the sense that it can print anything we want.

 If we call to one_param(“Bonjour”), it will print “Bonjour”.

 But if we call to one_param(4.5), it will print 4.5.

 Same if we make y = 4.5 and call to one_param(y), it will print 4.5.

06/10/2016 Dr. Ignacio Castiñeiras 86

Example: ex11_function_parameters.py

Keywords

 Interestingly, in all the calls shown before, the steps are the same:

1. A call to the function one_param is done, triggering the function
execution.

E.g., one_param(“Bonjour”)

or y = 4.5 and then one_param(y)

2. Parameters are assigned to the values the function is called with.

E.g., in one_param(“Bonjour”)  message = “Bonjour”

In y = 4.5 and then one_param(y)  message = 4.5

3. The function content is executed (with message taking initially the
value it has been assigned to).

4. When the function finishes, the control comes back to the point of
the program where the function was called from.

06/10/2016 Dr. Ignacio Castiñeiras 87

Example: ex11_function_parameters.py

Keywords

Moreover, a parameter can expect to receive a value from a concrete
datatype.

o In the case of one_param, the parameter message can receive a
value of any type.

o On the other hand, the function multiple_params has 3 parameters:

 The first one, param1, expects to receive a Boolean value.

 The second one, param2, expects an integer.

 The third one, param3, can receive a value of any datatype.

Thus, if we call multiple_params(False, 3, “Hello”) everything is ok.

But, call multiple_params(False, “Hello”, “Hello”) an error is triggered
as the second parameter is of type String rather than int.

06/10/2016 Dr. Ignacio Castiñeiras 88

Example: ex11_function_parameters.py

Parameter Passing Policy

 A function argument can be passed by value or by reference.

def function_name(argument1, argument2, …, argumentn):

#Block of code

return (value1, value2, …, valuek)

somewhere later on in the program function_name is called

…

function_name(variable1, variable2, …, variablen)

…

06/10/2016 Dr. Ignacio Castiñeiras 89

Parameter Passing Policy

 If an argument is passed by value:
1. The variables argument1 and variable1 are isolated

(they are different variables).

2. To run the function, argument1 is assigned to the value of variable1 (e.g.,
let’s suppose that variable1 is assigned to value 2. Then, at the moment of
the assignment, both argument1 and variable1 are assigned to value 2).

3. However, as they are actual different variables, if one of them changes its
value, the other one remains the same (e.g., let’s suppose that, within the
function, argument1 is assigned to value 3, then variable1 remains
assigned to value 2).

def function_name(argument1, argument2, …, argumentn):

….

function_name(variable1, variable2, …, variablen)

06/10/2016 Dr. Ignacio Castiñeiras 90

Parameter Passing Policy

 If an argument is passed by reference:

1. The variables argument2 and variable2 are indeed the same variable!

2. To run the function, argument2 is not assigned to the value of variable2, it

directly uses variable2 within the function (under the alias argument2).

3. Thus, by assigning argument2 to another value within the function, the

variable variable2 gets modified as well.

def function_name(argument1, argument2, …, argumentn):

….

function_name(variable1, variable2, …, variablen)

06/10/2016 Dr. Ignacio Castiñeiras 91

Parameter Passing Policy

 Basic type arguments are passed by value.

 Integer  int

 Rational  float

 Logical  bool

 Compound type arguments are passed by reference.

 Lists  list

 String  str

 Tuple  tuple

 Hash table / dictionary  dict

06/10/2016 Dr. Ignacio Castiñeiras 92

Keywords

Let’s see in action some examples of the two parameter passing policies

 On the one hand, the argument x of the function

parameter_by_value(x) is expected to be an integer, and thus it is

passed by value.

 As a result, when the call is done

var1 = 3

parameter_by_value(var1)

var1 and x are different variables. Thus, modifying x within

the function does not modify var1.

06/10/2016 Dr. Ignacio Castiñeiras 93

Example:
ex12_function_pass_by_value_vs_reference.py

Keywords

Let’s see in action some examples of the two parameter passing policies

 On the other hand, the argument x of the function

parameter_by_reference(x) is expected to be a list of integers, and thus

it is passed by reference.

 As a result, when the call is done

var2 = [5, 5, ,5]

parameter_by_reference(var2)

var2 and x are indeed the same variable. Thus, modifying x within

the function does actually modify var2.

06/10/2016 Dr. Ignacio Castiñeiras 94

Example:
ex12_function_pass_by_value_vs_reference.py

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 95

Value(s) return

 Likewise receiving some input arguments, a function can also

return some values as results.

o To do so, it suffices with using the keyword return, followed by

as many values as wanted.

o When executing the return instruction, the function finishes

(irrespectively of whether it contains more instructions

afterwards), getting the control back to the point of the program

where the call to the function was done.

def function_name(argument1, argument2, …, argumentn):

#Block of code

return (value1, value2, …, valuek)

06/10/2016 Dr. Ignacio Castiñeiras 96

Keywords

Let’s see in action some examples of functions returning values

 If a function has nothing to return, it suffices with writing nothing.

 Any function returning some values needs an explicit return.

06/10/2016 Dr. Ignacio Castiñeiras 97

Example: ex13_function_return.py

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 98

Strictness of evaluation

 Python has a strict parameter evaluation policy.

 This means that only values (or variables assigned to values) can

be used when calling to a function.

 The language also supports regular expressions and function

results, but these are to be understood as a syntactic sugar.

o Any expression / function is to be evaluated first to a value

before serving as argument to the function.

06/10/2016 Dr. Ignacio Castiñeiras 99

Keywords

Let’s see in action some examples of this strictness in evaluation

 The function return_5 has no parameters, and just returns the value 5.

 The function second takes in two parameters, and returns the second
one.

 As we can see in line 36, Python supports calling a function with
regular expressions or function results as parameters.

val1 = second(1+2, return_5())

o 1 + 2 is a regular expression  Obviously, it can be evaluated to 3,
but at the moment it is just the expression 1 + 2

o return_5() is a call to this function  Obviously, the execution of
the function will return the value 5, but at the moment it is just a
function call.

06/10/2016 Dr. Ignacio Castiñeiras 100

Example: ex14_strict_evaluation.py

Keywords

Let’s see in action some examples of this strictness in evaluation

 If we debug the program, we can see that Python does not trigger

immediately the function second.

o It first evaluates 1 + 2 to the value 3.

o It then executes the function return_5() getting as a result a value 5.

o And then, and only then, it calls to the function second(3, 5), which

triggers the execution of the function.

o The function is pretty dummy, it just discards the first argument,

takes the second and returns it.

06/10/2016 Dr. Ignacio Castiñeiras 101

Example: ex14_strict_evaluation.py

Keywords

Let’s see in action some examples of this strictness in evaluation

 Let’s see a more extreme situation of this strictness.

 The function loop just hangs. It calls itself over and over, ending in

an infinite loop which triggers an error when the program runs out of

memory.

val2 = second(loop(), 3)

 Interestingly, the former expression does not trigger the execution of

second. Before, it needs to execute the function loop() so as to get a

result value.

o However, as loop() hangs, the entire second(loop(), 3) execution

hangs.

06/10/2016 Dr. Ignacio Castiñeiras 102

Example: ex14_strict_evaluation.py

Keywords

Let’s see in action some examples of this strictness in evaluation

 This is very interesting as, if we think properly, the expression

val2 = second(loop(), 3)

does not really need to evaluate its first argument to a value.

At the end of the day, the proper second function will discard this

argument and return its second argument.

 However, due to the strict parameter evaluation policy of Python we
cannot avoid this unpleasant hang ending.

 On the other hand, other programming languages with lazy parameter
evaluation, as Haskell or TOY, will successfully evaluate
second(loop(), 3) to the value 3.

06/10/2016 Dr. Ignacio Castiñeiras 103

Example: ex14_strict_evaluation.py

Functions

We will study the following aspects from functions:

1. Program execution  Function Call Stack.

2. Parameters and parameter passing policy.

3. Value(s) return.

4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castiñeiras 104

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow Statements.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 105

Exception Handling

 Syntax errors are detected prior to the program execution.

 However, even a syntactically correct expression might cause an

error when an attempt is made to execute it (e.g., divide by 0).

This is called an exception.

 Python allows to handle exceptions, so as to avoid them leading to a

program crash. It is done via try except blocks.

o try gathers the program block protected against exceptions.

o except gathers the block being executed if an exception happens.

06/10/2016 Dr. Ignacio Castiñeiras 106

Keywords

Let’s see in action some examples of exception handling

 Both functions without_try and with_try incur in an exception when

attempting the division 0 / 0.

 without_try does not try except, which leads to an exception.

 with_try does use the blocks for protecting against exceptions.

o Thus, when 0/0 is attempted, the try block finishes and the control

is passed to the except block, which flags the exception to the user

without making the program crash.

06/10/2016 Dr. Ignacio Castiñeiras 107

Example: ex15_try_except.py

Outline

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow Statements.

8. Functions.

9. Exception Handling.

06/10/2016 Dr. Ignacio Castiñeiras 108

Thank you for your attention!

06/10/2016 Dr. Ignacio Castiñeiras 109

