C G

CORK Computing@CIT Q
1j INSTITUTE OF
TECHNOLOGY ‘i
INSTITIUID TEICNEOLAIOCHTA CHORCAI

Scripting for System Administrators
Lectures 2 - 8: Python Basic Syntax

P T

FEHELE

o R

06/10/2016 Dr. Ignacio Castifieiras

Goals of the Lecture

1. Introduction to Python Basic Syntax
 Start from scratch: Assume we know nothing.
O What's the minimum we must know to start working with Python?
How to learn this minimal syntax? = Incremental Methodology
o Describe one new concept at a time.
o Show it in action via one or more solved examples.
o Propose exercises for it.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0N bk o

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

Computing-driven Society loop:
I. Need to solve problems.

1. Problems that require complex strategies (algorithms) to be
addressed.

1. Algorithms that are implemented in programming languages
via programs.

Iv. Programs that are executed (run) by computers.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

1 By installing the Python interpreter and Python Virtual Machine...

o Computer able to understand the Python language and to perform
some computations based on its Python knowledge.

def my main():
for letter in 'Python':
if letter = 'h':
break
print letter

if name == ' main

my maini()

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

Key Concept:
What Python knowledge does a computer have?

Three knowledge levels:
1. Default knowledge - Prelude.
2. Linked knowledge = Imported.
3. New knowledge - Generated.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

[Default Knowledge = Prelude
o Let’s suppose a computer speaks Python. Thus, the computer has
some implicit knowledge of Python’s grammar and expressions:
= Keywords: It knows what is a for loop, if statement...
= Datatypes: It knows that 5 is an integer, that True 1s a Boolean...
= QOperators: It knows that 5 < 6 = True, that True /\ False = False...

= |t understands functions and modularity: It has a value/reference
parameter passing policy, strictness/laziness of parameter evaluation...

o This is usually referred to as the programming language prelude.
By speaking Python, the computer understands all these things (it
Is part of its knowledge) and thus can do computations using them.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

A Linked Knowledge = Imported
o A computer can borrow some knowledge generated by others:

= E.g., the Python prelude does not include logarithmic operations.
Thus, it is not part of the default knowledge a computer has, so it
cannot do computations including logarithms.

= However, this can be fixed by borrowing the external library:
import math;

= This extends the Python knowledge the computer has with
logarithms and other maths operations, which can be from now
on part of the operations the computer can do.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

O New Knowledge = Generated

o We can extend by ourselves (via Python programs) the Python
knowledge a computer can use.

= |Imagine we want to compute the number of words written in a
text file.

= This functionality does not belong to the Python prelude, so the
computer does not know how to do it just by the sake of
speaking Python.

= Moreover, let’s suppose that nobody in the Python community
did this before (of course this is not the case, but let’s suppose it

1S). Thus, the computer cannot borrow this knowledge by
Importing it neither.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

O New Knowledge = Generated

o Even in this case, we can still make a computer to open a text file
and count the words written on it. All we need is to:

1. Create a new Python program (e.g., my_program.py).

2. Implement by ourselves within the program a new function
(e.g., my_count_words) achieving the functionality required:

def my_count_words(file):
#function content (based on knowledge the computer has)

3. Import the program my_program.py, SO that the computer
learns all the new functions defined on it.

4. Now the computer can use my_count_words as part of Its
Python knowledge.

06/10/2016 Dr. Ignacio Castifieiras

Background: Python Programs Execution

Once the three categories of knowledge have been introduced,
let’s elaborate a bit more on each of them in the following sections:

 Default knowledge (Prelude):
Keywords, Datatypes, Operators

1 Linked knowledge (Imported):
Imports

1 New knowledge (Generated):
Variables, Functions

and, for the sake of being used for new generated knowledge:

Control Flow, Exception Handling, User Inputs

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016 Dr. Ignacio Castifieiras

Keywords

O A keyword, or reserved word, is a word that is reserved by a
program because it has a special meaning.

O This keyword and its meaning is known by the computer, as is part
of the Prelude or default knowledge.

The Python language has a small subset of keywords:

and elif if print
as else import rajise
a3sert except in return
break exec is try
class finally lambda while
continue for not with
def from or yield

del global pass

06/10/2016 Dr. Ignacio Castifieiras

Keywords

L Some keywords are related to control flow statements
(we will see more on them in the Control Flow Statement section)

and @-1it @ i: print
as ‘ElEIE import raise
agsert except in ‘]':-E turn
‘ break exec i3 try
class finally lambda ‘h‘hi le
‘cnntinue ‘ for not with
def from or yield

06/10/2016 Dr. Ignacio Castifieiras

Keywords

L Some keywords are related to operators
(we will see more on them in the Operators section)

‘and elif if print
as else import rajise
a3sert except ‘in return
break exec ‘ is try
class finally lambda while
continue for ‘ not wWith
def from ‘ or yield

del global pass

06/10/2016 Dr. Ignacio Castifieiras

Keywords

L Some keywords are related to exceptions
(we will see more on them in the Exception Handling section)

and elif if print
as else import ‘rai e
a3sert except in return
break exec is ‘try
class finally lambda while
continue for not with
def from or yield

del global pass

06/10/2016 Dr. Ignacio Castifieiras

Keywords

L Remaining keywords are related to: Function declaration, object
oriented class declaration, type aliases, import modules, etc.

O We will see more on some of them during the next sections.

and elif if ‘print
‘ as else ‘impnrt. raise
agsert except in return
break exec i3 try
@ -1:=s finally @1arbda while
continue for not ‘Hith
‘ def ‘ from or ‘yle 14

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

Let’s see one of these keywords 1n action: print

—1

4 print(*objects, sep='", end="\n', file=sys.stdout)

IS @ built-in function for displaying object messages.
o The function allows to write a single message or to append
several ones.
o The separation among the messages, the message finish protocol
and the proper stream the messages are printed to are
customisable (with default values being set in case of omit them)

d The file ex01_print.py presents some uses of print.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

d Comments on ex01_print.py:
1. The separation between:
A. Python Program Definition:

“* Where we define the imports, global variables and functions
determining the linked and generated new knowledge the
computer can use when running the Python Execution
section.

* In this case, the Python program consists on a single function
print_examples. WWe will spend an entire section for dealing
with functions later on, so by the moment we will not worry
about It.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

d Comments on ex01_print.py:
1. The separation between:

B. Python Program Execution:

¢ The concrete computations we ask the computer to do in our
behalf, based on the default, linked and generated knowledge
the computer has of Python.

¢ In this case, the Python execution just requires to run the
function print_examples. The computer knows how to run this

function, as it is part of its new generated knowledge learnt
after loading the Python program section.

By running the program we can see the results the computer
produces.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

d Comments on ex01_print.py:
2. The indentation:

o As we can see, Python does not use brackets { } to indicate
blocks of code (as you might be used to after studying Java).

o Instead, blocks of code in Python are rigid enforced by
Indenting the code:

= The content of the function print_examples (defined in line

17) is determined by the sub-sequent lines of code being
Indented (lines 18-40).

= Likewise, the content of the Python execution section
(starting at line 49) is determined by the sub-sequent lines
of code being indented (just line 50).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

d Comments on ex01_print.py:
3. The comment lines:

o Any line starting with a hash sign # represents a user comment
(e.g., lines 18, 21, 24, 25, etc.).

o The computer will ignore these lines, but they are very useful
as they make the program more human readable
(imagine we want to maintain/reuse the code in the future).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex01 print.py

J Regarding the proper code, the file shows how to use print to:
o Print to the standard output.
o How to print multiple messages concatenated.
o How to print to a file.

1 Likewise, it shows how to use input to read something the user
entered by keyboard.

o We will see much more on how to read / write from files in the
second part of the semester.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016 Dr. Ignacio Castifieiras

Datatypes

1 A datatype is a classification identifying one of various types of
data. It determines:

o The possible values this type can take.
o The operations that can be done with values of this type.

o The meaning of the data and the way values of that type can be
stored.

O Example:
o The set of values of the Boolean datatype are True and False.
o The type supports most logical operations: and, or, not, etc.

o The data represents a logical statement and it can be stored in a
computer memory with the values 0 and 1 (using a single byte).

06/10/2016

Dr. Ignacio Castifieiras

Datatypes

O Python supports the following datatypes as part of its prelude:

o Basic types.

Integer = int
Rational = float
Logical = bool

o Compound types.

Lists = list

String = str

Tuple = tuple

Hash table / dictionary - dict

06/10/2016 Dr. Ignacio Castifieiras

Datatypes

1 Python has dynamic typing:
o This means that runtime objects (values) have a type.

o This Is opposed to static typing languages (as Java) where
variables have a type. In Python, variables do not have a type,
they can name any object.

O Example:
x =1 < Here the variable x names a value of type int

x = True € Straight away X I1s made to name a value of
type bool, without any explicit type conversion.

This i1s forbidden in Java (as It is a static typing languaqge)
but supported in Python (as it is a dynamic typing language).

06/10/2016 Dr. Ignacio Castifieiras

Datatypes

1 Python has strong typing:
o This means that the type of a value does not suddenly change.

o A String value containing some numbers “123” doesn’t
magically become the int number 123.

O Example:

int(“123”) =» 123 < Every change of type requires
an explicit conversion

X =“123”

X = Int(x)

06/10/2016 Dr. Ignacio Castifieiras

Example: ex02_datatypes.py

Let’s see these datatypes and type castings in action

4 The function python_datatypes of the file ex02_datatypes.py presents
the different basic and compound types available in Python, with one
variable assigned to a value of each of these datatypes.

 The function type_conversions 0Of the file ex02_datatypes.py presents
some of the type conversion (castings) we can perform in Python.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016 Dr. Ignacio Castifieiras

Operators

O An operator is a keyword with a fixed syntax.

o Its behaviour is similar to a function, in the sense that it takes as
Input some argument (values of concrete datatypes) and
perform some computation with them so as to produce a result.

06/10/2016 Dr. Ignacio Castifieiras

Operators

L Most of the operators we will see now are binary (they have two
arguments), although they can be of any arity n.

o Operator :: Argumentl Argument2 - Result
Examples:
(+) ;- int Int - int (+)35—>8
(and) :: bool bool & bool (and) True False = False

 Moreover, most binary operators are used with an infix notation,
In which the operator is placed in between its two arguments:

3+5-2>38
True and False = False

06/10/2016

Dr. Ignacio Castifieiras

Operators

O The Python prelude supports the following basic operators:

o Arithmetic. +, - * [, %, **
o Relational: ==, 1=, > >= < <=
o Logical: and, or, not
o Assignment: =, +=, -=

06/10/2016 Dr. Ignacio Castifieiras

Example: ex03 operators.py

Let’s see these operators in action

d The function operators_examples Of the file ex03_operators.py calls to
the functions arithmetic_examples, relational_examples and
logical_examples for examples in the arithmetic, relational and logical
operators presented before, resp.

O Likewise, the result of each operator is stored in a variable via an
assignment operator.
o E.Q., add =6+ 3 < The assignment operator =
stores the result of the + operator (with input arguments 6 and 3)
Into the variable add.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex03 operators.py

O In the function logical _examples we can see the application of a
logical operator and over the results produced by applying two
relational operators.

and_example =6 >0 and 0> 2

1. The relational operator > is applied over the arguments 6 and 0.
It returns the Boolean value True as a result.

2. The relational operator > is applied over the arguments 0 and 2.
It returns the Boolean value False as a result.

3. The operator and is applied over the arguments True and False.
It returns the Boolean value False as a result.

4. The operator = is applied over the variable and example and the
value False. It assigns the value False to the variable and_example.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0N o bk o

06/10/2016 Dr. Ignacio Castifieiras

Imports

Besides the default knowledge of the Python prelude...

1 A computer can borrow the knowledge contained in a concrete
program ‘my_program.py’ (possibly generated by others).

1 To import this knowledge it suffices with using the command:
O import my_program
which imports all the knowledge generated in the Python program
section of my_program.py:
= Any function my_function declared on it.

= Any other Python module imported on it.
= Any global variable defined on it.

06/10/2016 Dr. Ignacio Castifieiras

Imports

Examplel
 The Python prelude does not include a logarithm operator.

 However, the Python program math.py (included in the Python
distribution) does include the function log, which computes the
logarithm of a number in a concrete base.

def log(number, base):

H# content of the function

4 Thus, if we import the Python program math.py then we can make
use of the function log.

import math
result = math.log(500, 10) < Computes the log of 500 in base 100

06/10/2016 Dr. Ignacio Castifieiras

Imports

Example2

L A Python program can receive some values from the command line.
These values are treated as arguments to the program, and are to be
picked by the user each time the program is to be executed.

 The Python prelude does not include an operator to access to a
command line argument passed by the user.
However, the Python program sys.py (included in the Python
distribution), does include the operator argv|i], which accesses to the
I-est argument passed by the user.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex04 _imports.py

Let’s see these two imports in action

d The function log_of_arguments USes sys.argv[1] and sys.argv|2] to get
the 2 command line arguments passed as parameters by the user.

 Each of these arguments Is read as a String (e.g., num and base).
Thus, to be used as input arguments of the function log, they need to
be converted first to integer values (i_num and i_base).

d When calling a program from command line, the argument sys.argv|0]
IS always the name of the program (in this case: exp4_imports.py).

Example: ex04 _imports.py

C:sUserssIgnacio.CastineirassDezktopScripgting for System Administrators™2. CGods
Examplez~LA2_A3_H4_H5 — Python Basic Sintaxpython.exe exB4_import.py 588 18
Rezult = 2.6789700043360183

C:sUserssIgnacio.CastineirassDezktop~Scripting for System Administrators™2. Code
Examplesz~LA2_A3_H4_HA5 — Python Basic Svntax:

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0N bk o

06/10/2016 Dr. Ignacio Castifieiras

Variables

L Any Python program can include new knowledge generated by the
user, so that the computer can use it for doing computations.

O The main two sources of generating new knowledge are via
Variables and Functions

And, for creating more expressive functions,
we are going to see other constructs as

Control Flow, Exception Handling, User Inputs

06/10/2016 Dr. Ignacio Castifieiras

Variables

4 Avariable is a named link/reference to a value stored in the
program’s memory or to an expression that can be evaluated.

o The expression/value it is pointing at can be modified during
the program execution:
= The evaluation of the expression might change.
= The variable can be reassigned to a different expression.

06/10/2016 Dr. Ignacio Castifieiras

Variables

A variable has to be declared somewhere within the program.

o This declaration place determines the variable scope
(the region in which the variable is valid).

o Some scope examples:

= Aglobal variable, defined at the beginning of the Python
program section = The variable is valid for the entire file.

= Avariable defined within a function = The variable is only
valid within the entire function block.

= Interestingly, a variable defined within a control-flow block
(e.g., If, for, while) = The variable is valid within the
control-flow block and also once it is finished
(this is different from Java).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex05 variable expression.py

 The function variable_examples 0f ex05_variable_exptession.py

presents some examples of variables and the expressions
they can be assigned to in action.

d We can see that a variable can be assigned either to:
1. Aconcretevalue: x=2 ; y=5

2. An expression that is evaluated to a concrete value before
assigning this value to the variable: x=x+1 2> x=3

o Inthis case the expression x + 1 Is evaluated.

o As x Is currently assigned to the integer value 2, the expression
can be evaluated as 2 + 1, giving the value 3 as output.

o Finally, x is assigned to this value 3.
= Likewise,y=y+x =2 y=8 (asy=5and x=3)

06/10/2016 Dr. Ignacio Castifieiras

Example: ex05 variable expression.py

1 Each new variable we define is new knowledge we are generating.
o To define a variable we have to assign it to an initial value.

o The Python interpreter does not allow a variable with no value
assigned to it, as it is interpreted as an unresolved reference.

. He

H

- T - - " — | . - . - - - [p— i | e - - | g |
gke a4 mistake by tryving to use & varigble not previously defined

#
X

|

+

.4 A
et

| Unresolved reference 'z’ more... (Ctrl+F1) L

~ o e F
of a variable and chnange 1L

Here we can see an example with the expression x + z, where the
variable z has not been previously assigned any value, and thus it Is
Interpreted as an unknown identifier.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex05 variable expression.py

1 As we stated in the Section “Datatypes”, Python has dynamic and
strong typing.
o We can see that the variable y is assigned to an integer value 8.
= And, If we ask for type(y) It returns type int, obviously.

o Later on, we can assign y to an expression of a different datatype.
In this case we assign it to the expression 3 > 0, which is resolved
to the value True, of type Boolean (bool).

o Finally, we can explicitly cast the Boolean value True to a String
value “True”, of type String.

06/10/2016

Dr. Ignacio Castifieiras

Example: ex06 variable scope.py

1 A global variable a is defined.
o The scope of this variable is the entire program section.
Thus, it can be used within the function example_1.

o However, a function can define a local variable a.

In this case, the local variable a Is said to overwrite the global one
(i.e., it is the local variable a the one being used within the
function, and not the global one).

o These examples with global variables are used to explain the
concept of variable scope. However, the message is clear:

= Do not use global variables during this semester!

06/10/2016

Dr. Ignacio Castifieiras

Example: ex06 variable scope.py

 As previously stated, interestingly, in Python a control-flow block
does not define a scope.

o That is, the function example_3 includes an if block.

o Within this if block the variable x Is defined by assigning the value
3toit.

o However, once the if block finishes, the scope of x still remains, so
It can be used for the rest of the function (in particular in the
expression x = x + 1 just after the if block).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex06 variable scope.py

 This behaviour is not supported in other programming languages as
Java, which has a strict block scope for the control-flow statements.

public static wvoid example 3(){
boolean i = true;
if (i == true){
int x = 3;

; public class myMain {]

i 1 As we can see, it leads to an error
o A i in compilation time.

:

9

[x cannot be resclved to a variable

4 quick fixes available:

ittt | @ Create local variable '’
// MAIN i .

o e e e | = Create field x

public static wvoid main(String[] args) { | @ Create parameter 'x'

) example_3();] K Remove assignment

Press 'F2' for focus

06/10/2016 Dr. Ignacio Castifieiras

Example: ex06 variable scope.py

 In Python the interpreter triggers a warning, but not an error.

§ mmmmmmmmmmmmoooo- In execution time:
FUNCTION example 3) .
§ mmmmmmmmmmmmmmmomeeee o If the code enters the if block, x Is
fet s e A defined and the program execution
IF 1.5 Trves succeeds.
x = - a UL r Pl BLA - e | L k
x=x +1 Local vanable x' might be referenced before assignment less... (Ctrl+F1)
print (x)

This inspection warns about local variables referenced before assignment.

S PYTHON EXECUTION o If the code does not enter the if block
L (imagine i = False), then x not defined
Python program, making the and when it is used in the expression
o x = x + 1 the program triggers an

1f _pame_ == '_main ' execution error.

= example_ 31()
[

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

© 0N o bk o

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

1 The statements inside a Python program are generally executed
from top to bottom, in the order that they appear.

A control flow statement breaks up the flow of execution by
employing decision making, looping, and branching, enabling a
program to conditionally execute particular blocks of code.

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

L We are going to define the main control flow statements we will
use during the semester. We can classify them into:

o Decision-making statements:

= |f-then If-then-else
o Looping statements:
= While For

o Branching statements:
= Break Continue

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

Decision-making statements

 If-then:

An if-then statement forces to execute a certain block of code only
If a particular Boolean expression evaluates to True.

 If-then-else:

An if-then-else statement provides a secondary path of execution if
the Boolean expression evaluates to False.

Note: Python supports any nested level of if-then and if-then-else
statements.

06/10/2016 Dr. Ignacio Castifieiras

Example:
ex07_control_flow decision_making.py

Let’s see in action some examples of
If-then, if-then-else statements and nested applications of them

 The function if_then_examples presents examples for if-then with:
o A fixed True/False evaluated condition/expression.

o A variable condition/expression, whose evaluation depends on the
value of a variable.

o A complex condition/expression, based on the previous evaluation
of sub-expressions so as to finally evaluate the expression.

06/10/2016 Dr. Ignacio Castifieiras

Example:
ex07_control_flow decision_making.py

Let’s see in action some examples of
If-then, if-then-else statements and nested applications of them

J Likewise, the function if_then_else_examples presents a variant with
an else path for each example of if_then_examples.

4 Finally, the function nested_if_examples presents the nested
application of 3 if_then_else Staments.

o Please note that nested application of if_then Statements is also
supported, so as nested application of combined if_then with
if then_else.

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

L_ooping statements

d While:

Similar to an if_then statement, a while loop forces to execute
a certain block of code block if a particular Boolean expression expr
evaluates to true.

it expr == True: while expr == True:

block block

Main difference between while and if then:

o While statement: Once block has been executed, the control
comes back to expr for re-evaluating it. Thus, block is executed
over and over agaln until expr evaluates to False.

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

L_ooping statements

1 For:

A for loop iterates a variable over the items of any sequence,
forcing to execute a block of code once per item in the sequence.

for var in sequence: > for var in [iteml, item?2, ..., itemn]:

block block

o On the i1-est execution of block, var IS assigned to value iteml.

o The sequence of items can be either a list or a string
(we will see lists and strings in further lectures. Now we just need
to think of them as constructs gathering n > 0 elements in a
particular order).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex08 control flow looping.py

Let’s see in action some examples of
for and while loops (including nested applications of them)

 The function for_examples presents for examples iterating in:
o Alist of integers [2,4,8].
o A String “Hello™.
o Arange(1,5) = [1,2,3,4].
o Arange(2,10,2) being the latter the increment - [2,4,6,8]

06/10/2016 Dr. Ignacio Castifieiras

Example: ex08 control flow looping.py

Let’s see in action some examples of
for and while loops (including nested applications of them)

 The function while_examples presents a variant of the function
if_else_examples but using while loops instead:

o Please note that Example 1 leads to an infinite loop.

o On the other hand, Example 2 presents a loop that is never
executed.

o The loop of Example 3 is executed three times.
o Likewise, the loop of Example 4 is executed twice.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex08 control flow looping.py

Let’s see in action some examples of
for and while loops (including nested applications of them)

 The function nested_loop_examples presents:
o An example with 3 nested for loops.
o An example with 2 nested while loops.

o Please note that nested application of combined for with while
loops is also supported.

06/10/2016 Dr. Ignacio Castifieiras

Control Flow

Branching statements

] Break:

A break statement is associated to a looping statement, breaking
out of the smallest enclosing for or while loop.

L Continue:

A continue Statement continues with the next iteration of the
smallest enclosing for or while loop.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex09 control flow branching.py

Let’s see in action some examples of
break and continue statements

 The function break_examples presents some examples of using a
break in:

o One for loop.

o Several for loops nested.

o One while loop.

o Several while loops nested.

 The function continue_examples presents the same examples and the
Impact of using a continue instead of a break on them.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow Statements.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016 Dr. Ignacio Castifieiras

Functions

A In programming, modularity refers to the separation of the
functionality of a program into independent, interchangeable
pieces, each of them fully responsible of a concrete task.

1 Modularity brings several advantages:

o As the size and complexity of a program grows, programming
tasks become more difficult.

o In this context, the decomposition of a problem into multiple
small and independent pieces allows to better model the problem
domain.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O Modularity brings several advantages:

o Italso improves readability and maintenance of programs
(code is easier to understand).

o If you have to change a functionality requirement and this
functionality is isolated in a piece of code, then it Is easy to
locate 1t and modify it. Otherwise...nightmare!

Module 1 Module 2 Module n
Function-11 Funtion-21 / Funtion-nl
Function-12 «<— Function-22 Function-n2

Function-1k Function-2j l Function-nt

06/10/2016 Dr. Ignacio Castifieiras

Functions

1 This semester, all our Python programs - A single file/module.
However...

We will split the functionality of this single file/module
Into as many functions as needed.

O A function is a block of organized, reusable code that is used to
perform a single, related action.

o The structure of all our functions is going to be:
def function_name(argument/, argumentZ, ..., argumentn):

H#Block of code

return (value7, value?, ..., valuek)

06/10/2016 Dr. Ignacio Castifieiras

Functions

Functions will play a central role in this semester.

Any Python program program.py used in the semester
will achieve its functionality via a set of functions.

 That is, all the example programs of the lectures, all the code
examples of the labs, all the exercises to be done as part of the
assignments and exam...

o All of them must consist on a set of functions.

o | will not accept any program providing part of its functionality
out of a function. Full stop.

06/10/2016 Dr. Ignacio Castifieiras

F EF¥THON FROGHRAM
= # Here 15 where we are golng to define our set of...
Functions -z
- Global Varishbles
- Functions
...t0 achieve the functicnality regquired.
When executing > python 'this file'.py in & terminal,
the Pyvthon interpreter will load our program,
but it will execute nothing wvet.
__

FUNCTION extra functions

def function 1():
Function code

def function_2():
Function code

def function ni):
Function code

def my main{):
Function code

F FYTHON EXECUTION

This 1s the main entry point to the execution of our program.
Tt provides a8 call to the 'main function' defined in our

Python program, making the Python interpreter to trigger

1ts exscution.

if _name == ' main ':
my_main()

06/10/2016 Dr. Ignacio Castifieiras

F¥THON FROGHAM

Functions

¢ Here 15 where we are going to define our set of...
F - Imports
¢ - Global Varishles

#
#
£
£
- Functions
#
#
#
#

.to achieve the functionality reguiresd.
Fhen executing » python 'this file'.py in & terminal,
the Python interpreter will lpad our program,

but it will execute nothing yvet.

=3
=X + 1

for i in [2,4,8]:
print i

This code does not A
belong to any function —

E¥THON EXECUTION
¢ This 15 the main entry point to the execution of our program.

¢ Python program, making the Python interpreter to trigger

£
£
It provides a call to the 'main function' defined in our
#
i1ts execution.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Function Call Stack

1 As we have seen, a common aspect of all our examples so far is:

o The Python program section (at the top of the file):

= A set of functions (let’s say {f1, {2, ..., fn}), in which we
define some functionality.

o The Python execution section (at the bottom of the file):

= n>1 lines of code, including a call to, at least, one of the
functions of the set (let’s suppose a single call to £2).

= |nterestingly, we have seen that f2 can likewise include a call
to £3, which can likewise include a call to f4, etc.

06/10/2016 Dr. Ignacio Castifieiras

Function Call Stack

The set of calls performed to execute a program is called the call stack.

1 By tracing the program execution, we can study how this call stack:
o Grows (as new functions are called).
o Shrinks (as the functions finish their execution).

06/10/2016 Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

Let’s use the debug mode to trace the execution of the Python program
ex10_functions_call_stack.py, observing the evolution of its call stack.

06/10/2016

Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

First, let’s set a breakpoint at the Python Execution Section.

¥+ 2: Favorites

y¥¥¥yv¥v¥v

L |

[.oracle_jre_usage

B.p2

3 spyder2

[tooling

7 AppData

[Application Data

[Contacts

[Cookies

7 Desktop

» [Algorithms and Data Str
[€ Programming

[Computer Hardware

[Distributed Data Manageme
[GEMIC_051015

b [Linux Mint 17.1 - Generic

¥y vy

Debug a exl0_functions_call_stack

PYTHON EXECUTION
¢ This 1s the main entry point to the execution of our program.

#

#

It provides a call to the 'main function' defined in our
thon program, making the Python interpreter to trigger
#

1ts execution.

_name__ == ' main ':
1. The exscution of the Python program first calls to the function my main

@ my_main()

#2. Then 1t does nothing else. The exscution has then finished.

Debugger EConsole -+ E +

4 C:WPython3dh\python.exe "C:\Program Files (x86)\JetBrains\PyCharm Community Editicon 201&.1.4\helpers\pydev\pyde
pydev debugger: process 2880 is connecting

E‘, Connected to pydev debugger (build 145.1504)

. Process finished with exit code -1

=

=% 5: TODO

#, Python Consale Terminal

06/10/2016 Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

Second, let’s trigger the debugging of the program.

File Edit View MNavigate Code Refactor Run Tools W5 Window Help
O H m + - % ﬁ] ﬁl & ﬁ $ P [¢ ed0_functions_call_stack] (ﬁi ﬁ
] mm} Ea Dsktnp> [Scripting for System Adminishatms> 12, Code Euankls__} (]

I Project - ‘ o = | - - E- exl0_functions_call_stack.py * ‘
L D!gnacio.{laslineiras Ch\Users\Ignaci S
+ [PyCharm2016.1 # FUNCTION my main
» 3 .PyCharrmdd T
- » [.android def my main(): . .
E > [.dnx # 1. The function first calls to the
S funl ()
= b 3 eclipse
{; F idlerc # 2. It then calls to the function f1
» [.ipython fun3 ()
3 .matplotlib —
» [.oracle_jre_usage s 0 e R 0
F¥THON EXECUTION
=T e L
This is the main entry point to the ex
> D.spyderl # It provides a call to the 'main functic
> El.lmﬁng # Python program, making the Python inte:
b [E1 AppData # its execution.
3 Application Data f""""""""'"f """""""""""
» [EJContacts if _.IIB.IIEE_- == _ma.:Ln_ H - -
7 Cooki # 1. The execution of the Python prog
ookies @ my main()
* B Desktop
[Algorithms and Data Structu #2. Then it does pothing else. The e;
» [C Programming
» [Computer Hardware
» [Distributed Data Manageme
> [GEMIC 051015

06/10/2016 Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

Use ‘Step 1nto’ to trace the execution instruction by instruction..

- Ll At # ___________________________
I » [.PyCharmd0 # FUNCTION fun3
w » [.android # oo
% » 1 .dnx def fun3():
g » B eclipse # 1. The function defines a local variable: y
:I > D.idlerc v = "Bonjour"” v: 'Bonjour’
v .
» [.ipython # 2. It then prints the value of the variable
» [.matplotlib —_
» [.oracle_jre_usage
» C.p2 # 3. Finally, it calls to the function fun2
» [0 spyder2 funz{)
» tooling o
» [AppData # FUNCIION my main
[Application Data ittt
» [Contacts def my main():
1 Cookies # 1. The function first calls to the function funl
funl
¥y B Desktop ()
» [Algorithms and Data Structu # 2. It then calls to the function fun3
» [C Pregramming fun3 ()
» [Computer Hardware ':'
» [Distributed Data Managemel bl ——— ""‘l
b [E1 GENIC_051015 : FYTHON EEECUTION
. - i # This 1s the main entry point to the execution of our program.
[Linux Mint 171 - Generic # Tt mrovides a call to the "main funchkion' defined in anr
Debug F_,e exl0_functions_call_stack
(& | Debugger | [E] Console -5"*== t M M A Y
3 @ Frames -+ E Variables
Il | E MainThread ﬂ + 34 [y = {str} '‘Bonjour’
| d0_functions_call_stack.py:46
E s. @I funl, ex10_functions_call_stack.py:26
2 ° EI my_main, exl0_functions_call_stack.py:56
&l @ E <module>, exl0_functions_call_stack.py:70
W 0 B execfile, _pydev_execfile.py:18

b 2 mun _ Ena Thnn P Pithnn Canzale [& Tarminal

06/10/2016 Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

At any moment of the execution you can see the call stack.

I ST F oo
I » [.PyCharmd0 # FUNCTION fun3
o » [.android # oo
£ » [J.dnx def fun3(): . _ .
E » tl.eclipse # 1. The function def:r?es a local wvariable: y
. i ¥ = "Bonjour" ¥: 'Bonjour'
= » [.idlerc
v 0
> [python # 2. It then prints the value of the variable
» [.matplotlib —_
» [.oracle_jre_usage
» C.p2 # 3. Finally, it calls to the function fun2
» [0 spyder2 funz{)
> D.tonﬁng o
» [AppData # FUNCIION my main
[Application Data ittt
» [Contacts def my main():
1 Cookies # 1. The function first calls to the function funl
funl
A4 EDesktoE ()
» [Algorithms and Data Structu # 2. It then calls to the function fun3
» [C Pregramming fun3 ()
» [Computer Hardware :‘
» [Distributed Data Managemel bl ——— ""‘l
b [E1 GENIC_051015 “; L e memem o
X i i # This 15 the main entry point to the execution of our program.
[Linux Mint 171 - Generic # Tt mrovides a call to the "main funchkion' defined in anr
Debug F_,e exl0_functions_call_stack
Ga | Debugger Biiammenills T M ¥ 3 A %
7ﬁmmes \ ~+*| = Variables
Il | E MainThread ﬂ f\ [y = {str} '‘Bonjour’
d0_functions_call_stack.py:46
s. @I funl, ex10_functions_call_stack.py:26
° EI my_main, exl0_functions_call_stack.py:56
il
&l w E <module>, exl0_functions_call_stack.py:
W 0 ecfile, _pydev_execfile.py:18

b 2 mun = A TANO P Pithnn Canzale [& Tarminal

06/10/2016 Dr. Ignacio Castifieiras

Example: ex10 functions_call stack.py

For the function begin executed, you can see the state of its variables.

- Ll At # ___________________________
I » [.PyCharmd0 # FUNCTION fun3
o » [.android # oo
% » 1 .dnx def fun3():
E > tl.eclipse # 1. The_fun-:‘.:ior: defir?es a local variable: y
= b [.idlerc ¥ = "Bonjour" ¥: 'Bonjour'
v » [.ipyth . .
Apythan # 2. It then prints the value of the variable
» [.matplotlib —_
» [.oracle_jre_usage
» C.p2 # 3. Finally, it calls to the function fun2
» [0 spyder2 funz{)
» tooling o
» [AppData # FUNCIION my main
[Application Data ittt
» [Contacts def my main():
1 Cookies # 1. The function first calls to the function funl
funl
¥y B Desktop 0
» [Algorithms and Data Structu # 2. It then calls to the function fun3
» [C Pregramming fun3 ()
» [Computer Hardware :‘
» [Distributed Data Managemel bl ——— ""‘l
» [GEMIC 051015 # PYTHON EXECUTION
. - i # This 1s the main entry point to the execution of our program.
[Linux Mint 171 - Generic # Tt mrovides a call to the "main funchkion' defined in anr
Debug F_,e exl0_functions_call_stack
('.' Debugger ECunsole —+" E Z ! !]
3 @ Frames -+ E Variables \
= y = {str} 'Bonjour’
I
= . A _Cdll_Sack.py:c0
o . .
= EI my_main, exl0_functions_call_stack.py:56
il
&l @ E <module>, exl0_functions_call_stack.py:70
* EI execfile, _pydev_execfile.py:18
» PY Y

b 2 mun _ Ena Thnn P Pithnn Canzale [& Tarminal

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Function Parameters

A function can have n > 0 formal parameters/arguments.
deft function_name(argument/, argumentZ?, ..., argumentn):

H#Block of code

return (value7, value?, ..., valuek)

1 These parameters are nothing but variables.
o And remember, all Python variables have to have a value assigned.

Which value is each parameter argument7assigned to?
o This is resolved at the time the function is called.

o On each call to the function, the control is transfer to it, and the
variable argumentz IS assigned to the value the function is called with.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex11 function parameters.py

Let’s see in action some examples of functions with different parameters

4 On the one hand, the function no_param has no parameters.

o It 1s static, in the sense that it always prints “Hello”.

 On the other hand, the function one_param(message) has a single
parameter, called ‘message’.

o Itis dynamic, in the sense that it can print anything we want.
= |f we call to one_param(“Bonjour”), it will print “Bonjour”.
= But if we call to one_param(4.5), it will print 4.5.

= Same if we make y = 4.5 and call to one_param(y), it will print 4.5.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex11 function parameters.py

O Interestingly, in all the calls shown before, the steps are the same:

1. Acall to the function one_param IS done, triggering the function
execution.

E.g., one_param(“Bonjour”)
or y = 4.5 and then one_param(y)
2. Parameters are assigned to the values the function is called with.
E.g., In one_param(“Bonjour”) = message = “Bonjout”
In y = 4.5 and then one_param(y) —> message = 4.5

3. The function content is executed (with message taking initially the
value It has been assigned to).

4. When the function finishes, the control comes back to the point of
the program where the function was called from.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex11 function parameters.py

] Moreover, a parameter can expect to receive a value from a concrete
datatype.

o Inthe case of one_param, the parameter message can receive a
value of any type.

o On the other hand, the function multiple_params has 3 parameters:
= The first one, param1, expects to receive a Boolean value.
= The second one, param2, eXpects an integer.
= The third one, param3, can receive a value of any datatype.

Thus, if we call multiple_params(False, 3, “Hello”) everything Is ok.

But, call multiple_params(False, “Hello”, “Hello) an error Is triggered
as the second parameter is of type String rather than int.

06/10/2016 Dr. Ignacio Castifieiras

Parameter Passing Policy

O A function argument can be passed by value or by reference.

deft function_name(argument/, argumentZ, ..., argumentn):
#Block of code
return (value7, value?, ..., valuek)

somewhere later on in the program function_name is called

function_name(variable7, variableZ, ..., variablen)

06/10/2016 Dr. Ignacio Castifieiras

Parameter Passing Policy

O If an argument is passed by value:
1. The variables argument1 and variable1 are Isolated
(they are different variables).

2. To run the function, argument1 Is assigned to the value of variablel (e.g.,
let’s suppose that variablel Is assigned to value 2. Then, at the moment of
the assignment, both argumentl and variablel are assigned to value 2).

3. However, as they are actual different variables, if one of them changes its
value, the other one remains the same (e.g., let’s suppose that, within the
function, argumentl IS assigned to value 3, then variable1 remains
assigned to value 2).

def function_name(argument/, argument?, ..., argumenth):

function_name(variable7, variable2, ..., variablen)

06/10/2016 Dr. Ignacio Castifieiras

Parameter Passing Policy

O If an argument is passed by reference:
1. The variables argument2 and variable2 are indeed the same variable!

2. To run the function, argument2 is not assigned to the value of variable2, It
directly uses variable2 within the function (under the alias argument2).

3. Thus, by assigning argument2 to another value within the function, the
variable variable2 gets modified as well.

def function_name(argument/, argumentZ, ..., argumenth):

function_name(variable7, variableZ, ..., variablen)

06/10/2016 Dr. Ignacio Castifieiras

Parameter Passing Policy

[Basic type arguments are passed by value.
* |nteger =2 int
= Rational = float
= Logical < bool

L Compound type arguments are passed by reference.
= Lists = list
= String =2 str

= Tuple = tuple
= Hash table / dictionary = dict

06/10/2016 Dr. Ignacio Castifieiras

Example:
ex12 function_pass by value vs reference.py

Let’s see in action some examples of the two parameter passing policies

 On the one hand, the argument x of the function
parameter_by_value(x) IS expected to be an integer, and thus it is
passed by value.

1 As a result, when the call is done
varl = 3
parameter_by_value(varl)
varl and x are different variables. Thus, modifying x within
the function does not modify varl.

06/10/2016 Dr. Ignacio Castifieiras

Example:
ex12 function_pass by value vs reference.py

Let’s see in action some examples of the two parameter passing policies

[On the other hand, the argument x of the function
parameter_by_reference(x) IS expected to be a list of integers, and thus
It Is passed by reference.

1 As a result, when the call is done
var2 =[5, 5, ,5]
parameter_by_reference(var2)
var2 and x are indeed the same variable. Thus, modifying x within
the function does actually modify var2.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Value(s) return

1 Likewise receiving some input arguments, a function can also
return some values as results.

o To do so, it suffices with using the keyword return, followed by
as many values as wanted.

o When executing the return instruction, the function finishes
(irrespectively of whether it contains more instructions
afterwards), getting the control back to the point of the program
where the call to the function was done.

def function_name(argument/, argumentZ, ..., argumentn):
#Block of code

return (value7, value?, ..., valuek)

06/10/2016 Dr. Ignacio Castifieiras

Example: ex13 function_return.py

Let’s see in action some examples of functions returning values
Q If a function has nothing to return, it suffices with writing nothing.

 Any function returning some values needs an explicit return.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Strictness of evaluation

O Python has a strict parameter evaluation policy.

O This means that only values (or variables assigned to values) can
be used when calling to a function.

O The language also supports regular expressions and function
results, but these are to be understood as a syntactic sugar.

o Any expression / function is to be evaluated first to a value
before serving as argument to the function.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex14 strict_evaluation.py

Let’s see in action some examples of this strictness in evaluation

 The function return_5 has no parameters, and just returns the value 5.

1 The function second takes in two parameters, and returns the second
one.

1 As we can see in line 36, Python supports calling a function with
regular expressions or function results as parameters.

Vall — SCCOﬂd(l +2, return_S())

o 1+ 2isaregular expression = Obviously, it can be evaluated to 3,
but at the moment it is just the expression 1 + 2

o return_5() is a call to this function - Obviously, the execution of
the function will return the value 5, but at the moment it is just a
function call.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex14 strict_evaluation.py

Let’s see in action some examples of this strictness in evaluation

4 If we debug the program, we can see that Python does not trigger
Immediately the function second.

o It first evaluates 1 + 2 to the value 3.
o It then executes the function return_5() getting as a result a value 5.

o And then, and only then, it calls to the function second(3, 5), which
triggers the execution of the function.

o The function iIs pretty dummy, it just discards the first argument,
takes the second and returns it.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex14 strict_evaluation.py

Let’s see in action some examples of this strictness in evaluation

1 Let’s see a more extreme situation of this strictness.

 The function loop just hangs. It calls itself over and over, ending in

an infinite loop which triggers an error when the program runs out of
memory.

val2 = second(loop(), 3)

 Interestingly, the former expression does not trigger the execution of
second. Before, it needs to execute the function loop() so as to get a
result value.

o However, as loop() hangs, the entire second(loop(), 3) execution
hangs.

06/10/2016 Dr. Ignacio Castifieiras

Example: ex14 strict_evaluation.py

Let’s see in action some examples of this strictness in evaluation

 This Is very interesting as, If we think properly, the expression
val2 = second(loop(), 3)
does not really need to evaluate its first argument to a value.
At the end of the day, the proper second function will discard this
argument and return its second argument.

1 However, due to the strict parameter evaluation policy of Python we
cannot avoid this unpleasant hang ending.

[On the other hand, other programming languages with lazy parameter
evaluation, as Haskell or TOY, will successfully evaluate
second(loop(), 3) to the value 3.

06/10/2016 Dr. Ignacio Castifieiras

Functions

O We will study the following aspects from functions:
1. Program execution = Function Call Stack.
2. Parameters and parameter passing policy.
3. Value(s) return.
4. Strictness of evaluation.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow Statements.

Functions.

Exception Handling.

© 0N o bk o

06/10/2016 Dr. Ignacio Castifieiras

Exception Handling

1 Syntax errors are detected prior to the program execution.

d However, even a syntactically correct expression might cause an
error when an attempt is made to execute it (e.g., divide by 0).
This is called an exception.

1 Python allows to handle exceptions, so as to avoid them leading to a
program crash. It is done via try except blocks.

o try gathers the program block protected against exceptions.
o except gathers the block being executed if an exception happens.

06/10/2016

Dr. Ignacio Castifieiras

Example: ex15 try except.py

Let’s see in action some examples of exception handling

 Both functions without_try and with_try Incur in an exception when
attempting the division 0/ 0.

4 without_try does not try except, which leads to an exception.
 with_try does use the blocks for protecting against exceptions.

o Thus, when 0/0 is attempted, the try block finishes and the control
IS passed to the except block, which flags the exception to the user
without making the program crash.

06/10/2016 Dr. Ignacio Castifieiras

Outline

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow Statements.

Functions.

Exception Handling.

© 0 No bk o

06/10/2016

Thank you for your attention!

