20/10/2016 Dr. Ignacio Castifieiras

CORK
1§ INSTITUTE OF
TECHNOLOGY

INSTITIUID TEICNEOLAIOCHTA CHORCAI

Scripting for System Administrators
Lectures 9 - 12: Python Compound Types

? s

FEHELE

o R

20/10/2016 Dr. Ignacio Castifieiras

© 0 No bk o

|.02-08: Python Basic Syntax

Background: Python Programs Execution.
Keywords.

Datatypes.

Operators.

Imports.

Variables.

Control Flow.

Functions.

Exception Handling.

20/10/2016 Dr. Ignacio Castifieiras

L09-12: Python Compound Types

Basic Types:
Int
float
bool

Main Motivation:
How to proceed when
single variables are not enough?

Compound Types:
list
tuple
Str
dict

FUNCTION my main

def my main():

a =3

B = 3.5

c = True

d = "Hello"

e = [1,2,3]

£ = (3.5, 3.8)

g = {'Hame': "Messi",

"Age': 28,

print

print
print
print
print
print

"Goals': 4100

20/10/2016

Outline

e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016

Outline

e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016 Dr. Ignacio Castifieiras

Lists

A Python list: Sequence of elements separated by commas and
enclosed by brackets.

listl = [3, 5, 7]

list2 = [“Hello”, “Hola”, “Bonjour”]

list3 = [3, “Hello”, 5.0, (3,2)]

listd = [3, {'Name": 'Messi', 'Goals': 400}]

1 Lists are mutable!

o We can create and access them, but also insert new elements /
remove existing elements from them.

= Let’s not complicate our life!

In the lists being used in this module, all elements will belong to a
basic type (and all elements of the list will be of that type).

20/10/2016

Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

~N o Ok wbd e

Create a new list.

Access to elements of the list.
Update an element of the list.
Insert a new element in the list.
Remove an element from the list.
Length of a list.

Check if element belongs to a list.

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

8. Compute the maximum and the minimum of a list.
9. Count number of appearances of element.

10. Find the index of an element.

11. Reverse a list.

12. Sort a list.

13. Copying a list: Shallow vs. Deep copy.

14. List of lists.

15. List comprehension.

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

1. Create a new list.

= Assimple as assign to a variable a new sequence of elements
separated by commas and enclosed by brackets.

= We can create empty lists (e.g., my_listl = [])
or non-empty lists (e.g., my_list2 = [3, 5, 7])

0 Example:
ex01 lists_create.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

2. Access to elements of the list.

= The elements in a list are numerated starting by index O.
Thus, the first element of a list has index 0O, the second one has
Index 1, and so on.

= We can access to a single element (e.g., my_list[2]).

o It allows to access to the variable placed at index 2 of the list.

o The access will trigger an exception if the list does not contain an
element in the index requested (i.e., if the list is shorter).

0 Example:
ex02_lists_access.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

2. Access to elements of the list.

= The elements in a list are numerated starting by index O.
Thus, the first element of a list has index 0O, the second one has
Index 1, and so on.

= We can access to multiple elements (e.g., my_list[1:4], to get the
second, third and fourth positions of the list in one go).

o The result is a new list with the subset of indexes required.

o If some indexes do not exist, it does not trigger any error, just
returns no element for this.

0 Example:
ex02_lists_access.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

3. Update an element of the list.
= We can update a single element (e.g., my_list[2] = 3).

o This updates the variable of the list placed at that index, but
returns nothing.

o The access will trigger an exception is the list does not
contain an element at the index requested (i.e., if the list Is
shorter).

0 Example:
ex03_lists_update.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

4. Insert a new element in the list.

= \We can insert the element at the end of the list
E.g., my_list.append(5)

= We can insert the element just before current index ‘I’
E.g., my_list.insert(2, 5)

o If the list has less elements than i, then it just insert the
new_val at the end of the list.

o If ‘I’ is a negative value it just inserts nothing.

0 Example:
ex04 _lists_insert.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

5. Remove an element from the list.
= |f we know the index of the element we want to remove, then
we use ‘del’ statement (e.g., del my_list[2]).
o It will remove just this element.

o The access will trigger an exception is the list does not
contain an element in the index requested (i.e., if the list is

shorter).

0 Example:
ex05 lists_remove.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

5. Remove an element from the list.

= |f we only know the value we want to remove, we use
my_list.remove(3)

o It will only remove the first appearance of value in the list.

o The method will trigger an exception is the value does not
appear in the list.

0 Example:
ex05_lists_remove.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

6. Length of a list.
" len(my_list)
o Returns the number of elements of the list.

0 Example:
ex06 _lists_length.py

Also: Let s do this function by ourselves!
def our_list_length(my _list):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

7. Check if element belongs to a list.
" valuel = 3 in my_list
" value2 = 9 not in my_list

o Returns True or False, depending on whether the element is
contained in the list or not.

0 Example:
ex07_membership.py
Also: Let s do this function by ourselves!
def our_is_in_list(my_list, elem):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

8. Compute the maximum and the minimum of a list.
" valuel = min(my_list)
" value2 = max(my_list)

o Returns the maximum and minimum value, resp.

0 Example:
ex08 membership.py
Also: Let s do this function by ourselves!
def our_max_list(my_list):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

9. Count number of appearances of element.

" valuel = my_list.count(5)

o Returns the number of appearances of the element.

0 Example:
ex09 _list_element_appearances_count.py
Also: Let s do this function by ourselves!
def our_count_in_list(my _list, elem):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

10. Find the Index of an element.
" valuel = my_list.index(3)
o Returns the index at which the element is.

0 Example:
ex10 _lists_element_index.py
Also: Let s do this function by ourselves!
def our_index_in_list(my_list, elem):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

11. Reverse a list.

" my_list.reverse()

o Returns no value, but reverses the list.

0 Example:
ex11 lists_reverse.py
Also: Let s do this function by ourselves!
def our_list_reverse(my _list):

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

12. Sort a list.

" my_list.sort()
o Returns no value, but sorts the list.

0 Example:
ex12_lists_sort.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

13. Copying a list: Shallow vs. Deep copy.
= Shallow copy: shallow_list] = my_list
o We have a single implementation list, with both shallow_list1
and my_list pointing at It.
o Thus, If we modify shallow_list1 (e.g., shallow_list1[0] = 10),

then the change will be reflected also in my_list (i.e., its
element O will be set to value 10 as well).

0 Example:
ex13 lists_shallow vs deep copy.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

13. Copying a list: Shallow vs. Deep copy.
= Deep copy: deep_list2 = my_list|[:]
o We create a second implementation of the my_list, which Is

assigned to deep_list2. Thus, now deep_list2 and my_list are
Independent.

o In this context, if we modify deep_list2
(e.9., deep_list[1] = 20), then the change will no affect to
my_list.

0 Example:
ex13 lists_shallow vs deep copy.py

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

14. So far we have worked with a list of basic elements.
my_list]l = [3, 5, 7]
However, we can also use list of lists of basic elements.
my_list2 = [[1, 3], [2, 4], [5, 8] |
my_list3 = [[[1, 2], [3,4]], [[5, 0], [7, 8]]]

O Python supports a list, a list of lists, a list of lists of lists and so
on, so all the operations presented before can be applied to them
all.

20/10/2016 Dr. Ignacio Castifieiras

Lists

What do we want to know from lists?

15. List comprehension.
o Filter the elements of a list based on a specified criteria.
o Operate how we want with the filtered elements.

0 Examples:
o Filter the odd numbers of a list.
o Filter the elements of a list being bigger than 5, and add them 3.

20/10/2016

Outline

B e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016 Dr. Ignacio Castifieiras

Tuples

A Python tuple: Sequence of elements separated by commas and
enclosed by parenthesis.

tuplel = (3,5, 7)

tuple2 = (“Hello”, “Hola”, “Bonjour”)
tuple3 = (3, “Hello”, 5.0, (3,2))

tupled = (3, {'Name". 'Messi', 'Goals'": 400})

 Tuples are non-mutable!

o We can create and access them, but we cannot insert new
elements / modify existing elements or remove them.

= |n this context, tuples can be thought as read-only lists!

20/10/2016 Dr. Ignacio Castifieiras

Tuples & lists share a lot of the operations we saw before.
Some operations of lists are not allowed now for tuples.

N o Ok W

Tuples

Create a new tuple.

Access to elements of the tuple.
Update an element of the tuple.
Insert a new element in the tuple.
Remove an element from the tuple.
Length of a tuple.

Check if element belongs to a tuple.

20/10/2016 Dr. Ignacio Castifieiras

Tuples

8. Compute the maximum and the minimum of a tuple.
9. Count number of appearances of element in tuple.
10. Find the index of an element in tuple.

11. Reverse a tuple.

12. Sort a tuple.

13. Copying a tuple: Shallow vs. Deep copy.

14. Tuples of tuples

15. Tuples comprehension

20/10/2016 Dr. Ignacio Castifieiras

Tuples

For examples of all these operations take a look at

0 Example:
ex01 tuples.py

20/10/2016

Outline

B e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016 Dr. Ignacio Castifieiras

Strings

A Python string: Sequence of characters enclosed by quotes or
double quotes.

str]l = ‘Hello’
str2 = “Hello”
str3 =

1 Strings are non-mutable!

o We can create and access them, but you cannot insert new
characters or delete some of the characters of a string.

€6 9%
S

o We can assign an entire string “s”, or part of a string “s[11:12]”

to another string “s2”.
1 Astring can be seen as a list:
strl = “Hello” - listl =[‘H’,’¢e’,’1’,’]’,’0’]

20/10/2016 Dr. Ignacio Castifieiras

Strings & lists share a lot of the operations we saw before.
Some operations of lists are not allowed now for strings.

N o Ok W

Strings

Create a new string.

Access to elements of the string/list.
Update an element of the string.
Insert a new element in the string.
Remove an element from the string.
Length of a string/list.

Check if element belongs to a string/list.

20/10/2016 Dr. Ignacio Castifieiras

Strings

8. Compute the maximum and the minimum of a
string/list.

9. Count number of appearances of element in string/list.
10. Find the index of an element in string/list.

11. Reverse a string.

12. Sort a string.

13. Copying a string: Shallow vs. Deep copy.

14. Strings of strings.

15. List/String comprehension.

20/10/2016 Dr. Ignacio Castifieiras

Strings

There are extra operations we can do with Strings but
not with lists.

16. Find a pattern in a string.

17. Replace a pattern in a string with a new substring.
18. Split a string given a delimiter pattern.

20/10/2016 Dr. Ignacio Castifieiras

Strings

There are extra operations we can do with Strings but
not with lists.

16. Find a pattern in a string.

= string.find(substring)

o Returns the starting index of the pattern. If the pattern is not
present, then it returns just -1.

0 Example:
ex_string.py = Main method - Block 16.

20/10/2016 Dr. Ignacio Castifieiras

Strings

What else do we want to know from strings?

17. Replace a pattern in a string with a new substring.

= string.replace(pattern, substring)

o Returns each pattern in the string with the substring passed as
argument.

0 Example:
ex_string.py = Main method - Block 17.

20/10/2016 Dr. Ignacio Castifieiras

Strings

What else do we want to know from strings?

18. Split a string given a delimiter pattern.
= string.split(pattern)

o Returns a list with as many elements as substrings can be
obtained from splitting the original string with the pattern.

0 Example:
ex_string.py = Main method - Block 18.

20/10/2016

Outline

B e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

 Python dictionary: Data structure containing n > 0 pairs of
Information (key : value).

dictl = { “Name” : “Messi”, “Age” : 29, “Goals™ : 465 }
dict2={}

O Adictionary is mutable - (key : value) pairs can be:
o Inserted / accessed / modified / removed.

O Dictionary advantage = Fast element lookup
o Similar to hash tables in Java.
o It associates each Key to its value.

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

d Each keys of the dictionary has to be unique.
o Multiple keys can have associated the same value.
E.Q., dict3 = { “Name” : “Messi”, “Age” : 29}
o The keys have to be of type: String or int.
o The values can be of any type.

(1 Creation / Access:

o We use { } to construct the dictionary and [] to index it.
dict3 = { “Name” : “Messi”, “Age” : 29, “Goals” : 465}
var]l = dict[“Age”]

print varl = prints 29

o Indexing a non-existing key triggers an error.
varl = dict[*“Team”]

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

d New (key : value) addition / Existing keys’ value
update.
o E.g. dict3 = { “Name” : “Messi”, “Age” : 29}
o dict3["Age"] = 30 = update existing entry
o dict3["Team"] = "FC_Barcelona" = Add new entry

1 Remove (key : value) entries.
o E.g. dict3 = { “Name” : “Messi”, “Age” : 29}
o del dict3["Age"] = remove existing entry
o dict3.clear() = remove all entries

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

What else do we want to know from dictionaries?

1. Itakey Is present in the dictionary.
2. Get the keys of a dictionary.
3. Get the values of a dictionary.

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

What else do we want to know from dictionaries?

1. If akey is present on a dictionary.
= Keyindict

o Returns a Boolean value stating if the key iIs present in the
dictionary or not.

0 Example:
ex_dictionaries.py = Main method = Block 7.

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

What else do we want to know from dictionaries?

2. Keys of a dictionary.
= dict.keys()
o Returns a list with the keys present in the dictionary.

0 Example:
ex_dictionaries.py = Main method = Block 8.

20/10/2016 Dr. Ignacio Castifieiras

Dictionaries

What else do we want to know from dictionaries?

2. Values of a dictionary.
= dict.values()
o Returns a list with the values present in the dictionary.

0 Example:
ex_dictionaries.py = Main method = Block 8.

20/10/2016

Outline

e

Lists.
Tuples.
Strings.

Dictionaries.

Dr. Ignacio Castifieiras

20/10/2016

Thank you for your attention!

