
Scripting for System Administrators

Lectures 9 - 12: Python Compound Types

20/10/2016 Dr. Ignacio Castiñeiras 1

L02-08: Python Basic Syntax

1. Background: Python Programs Execution.

2. Keywords.

3. Datatypes.

4. Operators.

5. Imports.

6. Variables.

7. Control Flow.

8. Functions.

9. Exception Handling.

20/10/2016 Dr. Ignacio Castiñeiras 2

L09-12: Python Compound Types

20/10/2016 Dr. Ignacio Castiñeiras 3

Basic Types:

int

float

bool

Main Motivation:

How to proceed when

single variables are not enough?

Compound Types:

list

tuple

str

dict

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 4

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 5

Lists

 A Python list: Sequence of elements separated by commas and
enclosed by brackets.

list1 = [3, 5, 7]

list2 = [“Hello”, “Hola”, “Bonjour”]

list3 = [3, “Hello”, 5.0, (3,2)]

list4 = [3, {'Name': 'Messi', 'Goals': 400}]

 Lists are mutable!

o We can create and access them, but also insert new elements /
remove existing elements from them.

 Let’s not complicate our life!

In the lists being used in this module, all elements will belong to a
basic type (and all elements of the list will be of that type).

20/10/2016 Dr. Ignacio Castiñeiras 6

Lists

What do we want to know from lists?

1. Create a new list.

2. Access to elements of the list.

3. Update an element of the list.

4. Insert a new element in the list.

5. Remove an element from the list.

6. Length of a list.

7. Check if element belongs to a list.

20/10/2016 Dr. Ignacio Castiñeiras 7

Lists

What do we want to know from lists?

8. Compute the maximum and the minimum of a list.

9. Count number of appearances of element.

10. Find the index of an element.

11. Reverse a list.

12. Sort a list.

13. Copying a list: Shallow vs. Deep copy.

14. List of lists.

15. List comprehension.

20/10/2016 Dr. Ignacio Castiñeiras 8

Lists

What do we want to know from lists?

1. Create a new list.

 As simple as assign to a variable a new sequence of elements

separated by commas and enclosed by brackets.

 We can create empty lists (e.g., my_list1 = [])

or non-empty lists (e.g., my_list2 = [3, 5, 7])

 Example:

ex01_lists_create.py

20/10/2016 Dr. Ignacio Castiñeiras 9

Lists

What do we want to know from lists?

2. Access to elements of the list.

 The elements in a list are numerated starting by index 0.
Thus, the first element of a list has index 0, the second one has
index 1, and so on.

 We can access to a single element (e.g., my_list[2]).

o It allows to access to the variable placed at index 2 of the list.

o The access will trigger an exception if the list does not contain an
element in the index requested (i.e., if the list is shorter).

 Example:

ex02_lists_access.py

20/10/2016 Dr. Ignacio Castiñeiras 10

Lists

What do we want to know from lists?

2. Access to elements of the list.

 The elements in a list are numerated starting by index 0.
Thus, the first element of a list has index 0, the second one has
index 1, and so on.

 We can access to multiple elements (e.g., my_list[1:4], to get the
second, third and fourth positions of the list in one go).

o The result is a new list with the subset of indexes required.

o If some indexes do not exist, it does not trigger any error, just
returns no element for this.

 Example:

ex02_lists_access.py

20/10/2016 Dr. Ignacio Castiñeiras 11

Lists

What do we want to know from lists?

3. Update an element of the list.

 We can update a single element (e.g., my_list[2] = 3).

o This updates the variable of the list placed at that index, but
returns nothing.

o The access will trigger an exception is the list does not
contain an element at the index requested (i.e., if the list is
shorter).

 Example:

ex03_lists_update.py

20/10/2016 Dr. Ignacio Castiñeiras 12

Lists

What do we want to know from lists?

4. Insert a new element in the list.

 We can insert the element at the end of the list
E.g., my_list.append(5)

 We can insert the element just before current index ‘i’
E.g., my_list.insert(2, 5)

o If the list has less elements than i, then it just insert the
new_val at the end of the list.

o If ‘i’ is a negative value it just inserts nothing.

 Example:

ex04_lists_insert.py

20/10/2016 Dr. Ignacio Castiñeiras 13

Lists

What do we want to know from lists?

5. Remove an element from the list.

 If we know the index of the element we want to remove, then
we use ‘del’ statement (e.g., del my_list[2]).

o It will remove just this element.

o The access will trigger an exception is the list does not
contain an element in the index requested (i.e., if the list is
shorter).

 Example:

ex05_lists_remove.py

20/10/2016 Dr. Ignacio Castiñeiras 14

Lists

What do we want to know from lists?

5. Remove an element from the list.

 If we only know the value we want to remove, we use

my_list.remove(3)

o It will only remove the first appearance of value in the list.

o The method will trigger an exception is the value does not

appear in the list.

 Example:

ex05_lists_remove.py

20/10/2016 Dr. Ignacio Castiñeiras 15

Lists

What do we want to know from lists?

6. Length of a list.

 len(my_list)

o Returns the number of elements of the list.

 Example:

ex06_lists_length.py

Also: Let’s do this function by ourselves!

def our_list_length(my_list):

20/10/2016 Dr. Ignacio Castiñeiras 16

Lists

What do we want to know from lists?

7. Check if element belongs to a list.

 value1 = 3 in my_list

 value2 = 9 not in my_list

o Returns True or False, depending on whether the element is

contained in the list or not.

 Example:

ex07_membership.py

Also: Let’s do this function by ourselves!

def our_is_in_list(my_list, elem):

20/10/2016 Dr. Ignacio Castiñeiras 17

Lists

What do we want to know from lists?

8. Compute the maximum and the minimum of a list.

 value1 = min(my_list)

 value2 = max(my_list)

o Returns the maximum and minimum value, resp.

 Example:

ex08_membership.py

Also: Let’s do this function by ourselves!

def our_max_list(my_list):

20/10/2016 Dr. Ignacio Castiñeiras 18

Lists

What do we want to know from lists?

9. Count number of appearances of element.

 value1 = my_list.count(5)

o Returns the number of appearances of the element.

 Example:

ex09_list_element_appearances_count.py

Also: Let’s do this function by ourselves!

def our_count_in_list(my_list, elem):

20/10/2016 Dr. Ignacio Castiñeiras 19

Lists

What do we want to know from lists?

10. Find the index of an element.

 value1 = my_list.index(3)

o Returns the index at which the element is.

 Example:

ex10_lists_element_index.py

Also: Let’s do this function by ourselves!

def our_index_in_list(my_list, elem):

20/10/2016 Dr. Ignacio Castiñeiras 20

Lists

What do we want to know from lists?

11. Reverse a list.

 my_list.reverse()

o Returns no value, but reverses the list.

 Example:

ex11_lists_reverse.py

Also: Let’s do this function by ourselves!

def our_list_reverse(my_list):

20/10/2016 Dr. Ignacio Castiñeiras 21

Lists

What do we want to know from lists?

12. Sort a list.

 my_list.sort()

o Returns no value, but sorts the list.

 Example:

ex12_lists_sort.py

20/10/2016 Dr. Ignacio Castiñeiras 22

Lists

What do we want to know from lists?

13. Copying a list: Shallow vs. Deep copy.

 Shallow copy: shallow_list1 = my_list

o We have a single implementation list, with both shallow_list1

and my_list pointing at it.

o Thus, if we modify shallow_list1 (e.g., shallow_list1[0] = 10),

then the change will be reflected also in my_list (i.e., its

element 0 will be set to value 10 as well).

 Example:

ex13_lists_shallow_vs_deep_copy.py

20/10/2016 Dr. Ignacio Castiñeiras 23

Lists

What do we want to know from lists?

13. Copying a list: Shallow vs. Deep copy.

 Deep copy: deep_list2 = my_list[:]

o We create a second implementation of the my_list, which is
assigned to deep_list2. Thus, now deep_list2 and my_list are
independent.

o In this context, if we modify deep_list2
(e.g., deep_list[1] = 20), then the change will no affect to
my_list.

 Example:

ex13_lists_shallow_vs_deep_copy.py

20/10/2016 Dr. Ignacio Castiñeiras 24

Lists

What do we want to know from lists?

14. So far we have worked with a list of basic elements.

my_list1 = [3, 5, 7]

However, we can also use list of lists of basic elements.

my_list2 = [[1, 3], [2, 4], [5, 8]]

my_list3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

 Python supports a list, a list of lists, a list of lists of lists and so

on, so all the operations presented before can be applied to them

all.

20/10/2016 Dr. Ignacio Castiñeiras 25

Lists

What do we want to know from lists?

15. List comprehension.

o Filter the elements of a list based on a specified criteria.

o Operate how we want with the filtered elements.

 Examples:

o Filter the odd numbers of a list.

o Filter the elements of a list being bigger than 5, and add them 3.

20/10/2016 Dr. Ignacio Castiñeiras 26

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 27

Tuples

 A Python tuple: Sequence of elements separated by commas and

enclosed by parenthesis.

tuple1 = (3, 5, 7)

tuple2 = (“Hello”, “Hola”, “Bonjour”)

tuple3 = (3, “Hello”, 5.0, (3,2))

tuple4 = (3, {'Name': 'Messi', 'Goals': 400})

 Tuples are non-mutable!

o We can create and access them, but we cannot insert new

elements / modify existing elements or remove them.

 In this context, tuples can be thought as read-only lists!

20/10/2016 Dr. Ignacio Castiñeiras 28

Tuples

Tuples & lists share a lot of the operations we saw before.

Some operations of lists are not allowed now for tuples.

1. Create a new tuple.

2. Access to elements of the tuple.

3. Update an element of the tuple.

4. Insert a new element in the tuple.

5. Remove an element from the tuple.

6. Length of a tuple.

7. Check if element belongs to a tuple.

20/10/2016 Dr. Ignacio Castiñeiras 29

Tuples

8. Compute the maximum and the minimum of a tuple.

9. Count number of appearances of element in tuple.

10. Find the index of an element in tuple.

11. Reverse a tuple.

12. Sort a tuple.

13. Copying a tuple: Shallow vs. Deep copy.

14. Tuples of tuples

15. Tuples comprehension

20/10/2016 Dr. Ignacio Castiñeiras 30

Tuples

For examples of all these operations take a look at

 Example:

ex01_tuples.py

20/10/2016 Dr. Ignacio Castiñeiras 31

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 32

Strings

 A Python string: Sequence of characters enclosed by quotes or
double quotes.

str1 = ‘Hello’

str2 = “Hello”

str3 = “”

 Strings are non-mutable!

o We can create and access them, but you cannot insert new
characters or delete some of the characters of a string.

o We can assign an entire string “s”, or part of a string “s[i1:i2]”
to another string “s2”.

 A string can be seen as a list:

str1 = “Hello” list1 = [‘H’,’e’,’l’,’l’,’o’]

20/10/2016 Dr. Ignacio Castiñeiras 33

Strings

Strings & lists share a lot of the operations we saw before.

Some operations of lists are not allowed now for strings.

1. Create a new string.

2. Access to elements of the string/list.

3. Update an element of the string.

4. Insert a new element in the string.

5. Remove an element from the string.

6. Length of a string/list.

7. Check if element belongs to a string/list.

20/10/2016 Dr. Ignacio Castiñeiras 34

Strings

8. Compute the maximum and the minimum of a

string/list.

9. Count number of appearances of element in string/list.

10. Find the index of an element in string/list.

11. Reverse a string.

12. Sort a string.

13. Copying a string: Shallow vs. Deep copy.

14. Strings of strings.

15. List/String comprehension.

20/10/2016 Dr. Ignacio Castiñeiras 35

Strings

There are extra operations we can do with Strings but

not with lists.

16. Find a pattern in a string.

17. Replace a pattern in a string with a new substring.

18. Split a string given a delimiter pattern.

20/10/2016 Dr. Ignacio Castiñeiras 36

Strings

There are extra operations we can do with Strings but

not with lists.

16. Find a pattern in a string.

 string.find(substring)

o Returns the starting index of the pattern. If the pattern is not

present, then it returns just -1.

 Example:

ex_string.py Main method Block 16.

20/10/2016 Dr. Ignacio Castiñeiras 37

Strings

What else do we want to know from strings?

17. Replace a pattern in a string with a new substring.

 string.replace(pattern, substring)

o Returns each pattern in the string with the substring passed as

argument.

 Example:

ex_string.py Main method Block 17.

20/10/2016 Dr. Ignacio Castiñeiras 38

Strings

What else do we want to know from strings?

18. Split a string given a delimiter pattern.

 string.split(pattern)

o Returns a list with as many elements as substrings can be

obtained from splitting the original string with the pattern.

 Example:

ex_string.py Main method Block 18.

20/10/2016 Dr. Ignacio Castiñeiras 39

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 40

Dictionaries

 Python dictionary: Data structure containing n ≥ 0 pairs of

information (key : value).

dict1 = { “Name” : “Messi”, “Age” : 29, “Goals” : 465 }

dict2 = { }

 A dictionary is mutable (key : value) pairs can be:

o Inserted / accessed / modified / removed.

 Dictionary advantage Fast element lookup

o Similar to hash tables in Java.

o It associates each Key to its value.

20/10/2016 Dr. Ignacio Castiñeiras 41

Dictionaries

 Each keys of the dictionary has to be unique.
o Multiple keys can have associated the same value.

E.g., dict3 = { “Name” : “Messi”, “Age” : 29}

o The keys have to be of type: String or int.

o The values can be of any type.

 Creation / Access:

o We use { } to construct the dictionary and [] to index it.
dict3 = { “Name” : “Messi”, “Age” : 29, “Goals” : 465}

var1 = dict[“Age”]

print var1 prints 29

o Indexing a non-existing key triggers an error.
var1 = dict[“Team”]

20/10/2016 Dr. Ignacio Castiñeiras 42

Dictionaries

 New (key : value) addition / Existing keys’ value

update.

o E.g., dict3 = { “Name” : “Messi”, “Age” : 29}

o dict3["Age"] = 30 update existing entry

o dict3["Team"] = "FC_Barcelona" Add new entry

 Remove (key : value) entries.

o E.g., dict3 = { “Name” : “Messi”, “Age” : 29}

o del dict3["Age"] remove existing entry

o dict3.clear() remove all entries

20/10/2016 Dr. Ignacio Castiñeiras 43

Dictionaries

What else do we want to know from dictionaries?

1. It a key is present in the dictionary.

2. Get the keys of a dictionary.

3. Get the values of a dictionary.

20/10/2016 Dr. Ignacio Castiñeiras 44

Dictionaries

What else do we want to know from dictionaries?

1. If a key is present on a dictionary.

 Key in dict

o Returns a Boolean value stating if the key is present in the

dictionary or not.

 Example:

ex_dictionaries.py Main method Block 7.

20/10/2016 Dr. Ignacio Castiñeiras 45

Dictionaries

What else do we want to know from dictionaries?

2. Keys of a dictionary.

 dict.keys()

o Returns a list with the keys present in the dictionary.

 Example:

ex_dictionaries.py Main method Block 8.

20/10/2016 Dr. Ignacio Castiñeiras 46

Dictionaries

What else do we want to know from dictionaries?

2. Values of a dictionary.

 dict.values()

o Returns a list with the values present in the dictionary.

 Example:

ex_dictionaries.py Main method Block 8.

20/10/2016 Dr. Ignacio Castiñeiras 47

Outline

1. Lists.

2. Tuples.

3. Strings.

4. Dictionaries.

20/10/2016 Dr. Ignacio Castiñeiras 48

Thank you for your attention!

20/10/2016 Dr. Ignacio Castiñeiras 49

